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Abstract. Let p > 3 be a prime, u, v, d ∈ Z, gcd(u, v) = 1, p - u2 − dv2

and (−3d
p

) = 1, where (a
p
) is the Legendre symbol. In the paper we mainly

determine the value of
�

u−v
√

d

u+v
√

d

�(p−( p
3 ))/3

(mod p) by expressing p in terms

of appropriate binary quadratic forms. As applications, for p ≡ 1 (mod 3)

we obtain a general criterion for m(p−1)/3 (mod p) and a criterion for εd to
be a cubic residue of p, where εd is the fundamental unit of the quadratic

field Q(
√

d). We also give a general criterion for p | U(p−( p
3 ))/3, where

{Un} is the Lucas sequence defined by U0 = 0, U1 = 1 and Un+1 =
PUn − QUn−1 (n ≥ 1). Furthermore, we establish a general result to
illustrate the connections between cubic congruences and binary quadratic
forms.

MSC: Primary 11A15, Secondary 11E16, 11A07, 11B39
Keywords: cubic residue, binary quadratic form, cubic Jacobi symbol, cubic
congruence

1. Introduction.
Let Z be the set of integers, ω = (−1+

√−3)/2 and Z[ω] = {a+bω | a, b ∈
Z}. For π = a+bω ∈ Z[ω] the norm of π is given by Nπ = ππ̄ = a2−ab+b2,
where π̄ is the complex conjugate of π. We recall that π is primary if
π ≡ 2 (mod 3) (that is, 3 | a− 2 and 3 | b).

If π ∈ Z[ω], Nπ > 1 and π ≡ ±2 (mod 3), we may write π = ±π1 · · ·πr,
where π1, . . . , πr are primary primes. For α ∈ Z[ω], we can define the cubic
Jacobi symbol (α

π

)
3

=
( α

π1

)
3
· · ·

( α

πr

)
3
,

E-mail: hyzhsun@public.hy.js.cn
URL: http://www.hytc.edu.cn/xsjl/szh/

1



where
(

α
πt

)
3

is the cubic residue character of α modulo πt defined by

( α

πt

)
3

=
{

0 if πt | α,

ωi if α(Nπt−1)/3 ≡ ωi (mod πt).

For our convenience we also define
(

α
1

)
3

=
(

α
−1

)
3

= 1.
According to [IR, pp. 112-115, 135, 313] and [S1] the cubic Jacobi symbol

has the following properties:
(1.1) If a, b ∈ Z and a + bω ≡ 2 (mod 3), then

( ω

a + bω

)
3

= ω
a+b+1

3 and
( 1− ω

a + bω

)
3

= ω
2(a+1)

3 .

(1.2) If π, λ ∈ Z[ω] and π, λ ≡ ±2 (mod 3), then

(λ

π

)
3

=
(π

λ

)
3
.

(1.3) If α, π ∈ Z[ω] with π ≡ ±2 (mod 3) and (α
π )3 6= 0, then

(α

π

)−1

3
=

(α

π

)
3

=
( ᾱ

π̄

)
3
.

(1.4) If m, n ∈ Z, 3 - m and m is coprime to n, then
(

n
m

)
3

= 1.
(1.5) If π, α, β ∈ Z[ω] and π ≡ ±2 (mod 3), then

(
αβ
π

)
3

=
(

α
π

)
3

(
β
π

)
3
.

(1.6) If π1, π2, α ∈ Z[ω] and πi ≡ ±2 (mod 3) (i = 1, 2), then

( α

π1π2

)
3

=
( α

π1

)
3

( α

π2

)
3
.

The assertion (1.2) is now called general cubic reciprocity law, which
was first proved by G. Eisenstein.

For a prime q > 3 let Fq = Z/qZ be the ring of residue classes modulo
q and

C(q) = {∞} ∪ {x ∣∣ x ∈ Fq, x2 6= −3}.
For x, y ∈ C(q), in [S1] the author introduced the operation

x ∗ y =
xy − 3
x + y

(x ∗∞ = ∞∗ x = x)

and proved that C(q) is a cyclic group of order q − ( q
3 ), where (a

p ) is the
Legendre symbol.

Combining [S1, Corollary 2.1] with [S1, Theorem 3.2 and Corollary 3.3]
we have
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Theorem 1.1 (Rational cubic reciprocity law) Let p and q be dis-
tinct primes greater than 3. Suppose p ≡ 1 (mod 3) and hence 4p =
L2 + 27M2 for some L,M ∈ Z. Then

q is a cubic residue modulo p

⇐⇒ L

3M
is a cube in C(q)

⇐⇒ q | M or
L

3M
≡ s3 − 9s

3s2 − 3
(mod q) for some s ∈ Z.

Let p be a prime of the form 3k + 1. Let m be a cubefree integer with
m 6≡ 0,±1 (mod p). A general question is to give a good criterion for m
to be a cubic residue of p. A more general problem is to determine the
value of m

p−1
3 modulo p. Suppose 4p = L2 + 27M2 with L,M ∈ Z and

L ≡ 1 (mod 3). Clearly m
p−1
3 ≡ 1, −1−L/(3M)

2 , −1+L/(3M)
2 (mod p). In [L1]

E. Lehmer showed that if L ≡ M (mod 4), then 2(p−1)/3 ≡ (L+9M)/(L−
9M) ≡ −1−L/(3M)

2 (mod p). When q is a prime and q is a cubic nonresidue
of p, K. S. Williams [Wi] found a method to determine the sign of M so
that q

p−1
3 ≡ −1−L/(3M)

2 (mod p).
Inspired by Williams’ work, in 1998 the author published the paper [S1].

From [S1, Corollaries 2.1, 3.3 and 3.4] we have the following result.

Theorem 1.2. Let p and q be distinct primes greater than 3. Suppose
p ≡ 1 (mod 3), 4p = L2+27M2 (L,M ∈ Z), L ≡ 1 (mod 3) and q - M . For
any k ∈ Z with

(
k+1+2ω

q

)
3

= ω (in particular, for q ≡ ±4 (mod 9) we may
take k = 1, for q ≡ ±2 (mod 9) we may take k = −1, for q ≡ ±4 (mod 7)
we may take k = 9, for q ≡ ±2 (mod 7) we may take k = −9), we have

q
p−1
3 ≡ −1− L/(3M)

2
(mod p)

⇐⇒ L

3M
≡ k(s3 − 9s)− 9(s2 − 1)

s3 − 9s + 3k(s2 − 1)
(mod q) for some s ∈ Z.

In [S1] the author established the following general result for m(p−1)/3

(mod p), see [S1, Theorem 2.1].

Theorem 1.3. Let p ≡ 1 (mod 3) be a prime and 4p = L2 + 27M2 with
L,M ∈ Z and L ≡ 1 (mod 3). Suppose m ∈ Z and p - m. Assume 2α ‖ m,
3β ‖ m and m′ is the product of all prime divisors of m not dividing 6M .
Then for i = 0, 1, 2,

m
p−1
3 ≡

(−1− L/(3M)
2

)i

(mod p)

⇐⇒
(L + 3M(1 + 2ω)

m′

)
3

=
{

ωi+βM if 2 | M ,
ωi+βM−α if L ≡ M (mod 4).
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In this paper we determine the value of m
p−1
3 modulo p by expressing

p in terms of appropriate binary quadratic forms (see Theorem 4.4). For
example, we have

10
p−1
3 ≡





1 (mod p) if p = x2 + 75y2, 3x2 + 25y2,
7x−2y

10y (mod p) if p = 7x2 + 6xy + 12y2 6= 7,

− 19x+6y
10y (mod p) if p = 19x2 + 2xy + 4y2 6= 19,

where x and y are integers.
Let p > 3 be a prime and u, v, d ∈ Z with (u, v) = 1, p - u2 − dv2

and (−3d
p ) = 1, where (u, v) is the greatest common divisor of u and v. In

Section 4 we determine the value of
(

u−v
√

d
u+v

√
d

)(p−( p
3 ))/3 (mod p) by expressing

p in terms of appropriate binary quadratic forms. For example, if p is a
prime such that p ≡ 2 (mod 3) and ( p

17 ) = −1, then

(4 +
√

17)
p+1
3 ≡

{
−1 (mod p) if p = 11x2 + 5xy + 11y2,
1
2 − 10x+y

102y

√
17 (mod p) if p = 5x2 + xy + 23y2 6= 5.

As applications, we obtain general criteria for ε
(p−( p

3 ))/3

d (mod p) and
U(p−( p

3 ))/3(P, Q) (mod p), where εd is the fundamental unit of the quadratic
field Q(

√
d) (Q denotes the set of rational numbers) and {Un(P, Q)} is the

Lucas sequence given by U0(P, Q) = 0, U1(P, Q) = 1 and Un+1(P, Q) =
PUn(P,Q)−QUn−1(P,Q)(n ≥ 1).

For a, b, c ∈ Z denote the binary quadratic form ax2 + bxy + cy2 by
(a, b, c). The discriminant of (a, b, c) is the number D = b2 − 4ac. Denote
the equivalence class containing the form (a, b, c) by [a, b, c]. If a positive
integer n is represented by (a, b, c), then n can be represented by any form
in [a, b, c]. Thus we say that n is represented by [a, b, c]. For any nonsquare
integer D ≡ 0, 1 (mod 4) let H(D) be the form class group consisting of
classes of primitive, integral binary quadratic forms of discriminant D, and
let h(D) = |H(D)| be the corresponding class number.

In [SW1, SW2], using class field theory Spearman and Williams proved
the following general result for cubic congruences.
Theorem 1.4 Let a1, a2, a3 ∈ Z be such that f(x) = x3 + a1x

2 + a2x + a3

is irreducible in Z[x]. Let D be the discriminant of f(x), and let d be the
discriminant of the cubic field Q(t), where t is a root of f(x) = 0. Then
there is a unique subgroup J(a1, a2, a3) of index 3 in H(d) such that if
p > 3 is a prime with (D

p ) = 1, then the congruence f(x) ≡ 0 (mod p)
has three solutions if and only if p is represented by one of the classes in
J(a1, a2, a3).

In Section 7 of this paper, using our elementary method we prove a
general result similar to Theorem 1.4. In particular, we construct the cor-
responding subgroup J .
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All the main results in the paper are based on an important calculation
concerning cubic Jacobi symbols, see Theorem 3.1. Using Theorem 3.1 we
also construct cubic characters on H(−3k2d), where k = k(u, v, d) is given
by Definition 3.1. We should mention that some results in the paper are
similar to those results for quartic residues in [S3].

In addition to the above notation, we also use throughout this paper the
following notation:
N the set of positive integers, Zm the set of those rational num-

bers whose denominator is coprime to m, |x| the absolute value of x,
pα ‖ n means pα | n but pα+1 - n, ordpa the nonnegative integer r such
that pr ‖ a, gcd(n1, n2, n3) the greatest common divisor of n1, n2, n3,
(a, b, c) ∼ (a′, b′, c′) means (a, b, c) is equivalent to (a′, b′, c′), Ker χ the
kernel of the mapping χ.

2. Basic lemmas.
Let p ∈ N, 3 - p, k ∈ Zp and k ≡ k0 (mod p) for k0 ∈ {0, 1, . . . , p − 1}.

Following [S1] we define
(

k+1+2ω
p

)
3

=
(

k0+1+2ω
p

)
3

and

(2.1) Ci(p) =
{

k
∣∣∣
(k + 1 + 2ω

p

)
3

= ωi, k ∈ Zp

}
for i = 0, 1, 2.

Lemma 2.1. If a and b are integers such that 3 - a and 3 | b, then

( 3
a + bω

)
3

= ω
ab
3 .

Proof. Clearly 3 = −ω2(1 − ω)2 and
( −1

a+bω

)
3

= 1. If a ≡ 2 (mod 3),
then a + bω is primary. So using (1.1) we see that

( 3
a + bω

)
3

=
( ω

a + bω

)2

3

( 1− ω

a + bω

)2

3
= ω2(a+1+ b

3 ) = ω
2b
3 = ω

ab
3 .

If a ≡ 1 (mod 3), then −a− bω is primary. We also have

( 3
a + bω

)
3

=
( 3
−a− bω

)
3

= ω
(−a)(−b)

3 = ω
ab
3 .

This proves the lemma.

Lemma 2.2. Let u, v, d ∈ Z, and let p > 3 be a prime such that p - u2−dv2

and (−3d
p ) = 1. Suppose s ∈ Zp and s2 ≡ −3d (mod p). Then

(u− v
√

d

u + v
√

d

) p−( p
3 )

3 ≡





1 (mod p) if
( sv+u(1+2ω)

p

)
3

= 1,

1
2

(− 1− (p
3 ) s

√
d

d

)
(mod p) if

( sv+u(1+2ω)
p

)
3

= ω,

1
2

(− 1 + (p
3 ) s

√
d

d

)
(mod p) if

( sv+u(1+2ω)
p

)
3

= ω2.
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Proof. If p | u, then
( sv+u(1+2ω)

p

)
3

=
(

sv
p

)
3

= 1 and
(

u−v
√

d
u+v

√
d

)(p−( p
3 ))/3 ≡

(−1)(p−( p
3 ))/3 = 1 (mod p). Thus the result holds when p | u. Now suppose

p - u. From [S1, Theorem 2.2] we know that for i = 0, 1, 2,

sv

u
∈ Ci(p) ⇐⇒

( v
us−√−3
v
us +

√−3

) p−( p
3 )

3 ≡
(−1− (p

3 )
√−3

2

)i

(mod p).

Since s ≡ ±√−3 ·
√

d (mod p), we see that

sv

u
∈ Ci(p) ⇐⇒

( v
u

√
d− 1

v
u

√
d + 1

) p−( p
3 )

3 ≡
(−1− (p

3 ) s√
d

2

)i

(mod p).

This yields the result.

Lemma 2.3. Let (a1, b1, c1) and (a2, b2, c2) be two primitive, integral qua-
dratic forms of the same discriminant d, t = gcd(a1, a2,

b1+b2
2 ), and let

u, v, w be integers such that a1u + a2v + b1+b2
2 w = t. Let

a3 =
a1a2

t2
, b3 = b2 + 2

a2

t

(b1 − b2

2
v − c2w

)
and c3 =

b2
3 − d

4a3
.

Then
[a1, b1, c1][a2, b2, c2] = [a3, b3, c3].

Moreover, if U, V ∈ Z and (a1a2, 9U2 + 3dV 2) = 1, then
(b1V + U(1 + 2ω)

a1

)
3

(b2V + U(1 + 2ω)
a2

)
3

=
(b3V + U(1 + 2ω)

a3

)
3
.

Proof. From [C, p.246] we know that [a1, b1, c1][a2, b2, c2] = [a3, b3, c3].
By [S3, Lemma 3.2], we have

b3 ≡ b1 (mod 2a1/t) and b3 ≡ b2 (mod 2a2/t).

Thus,
(b3V + U(1 + 2ω)

a3

)
3

=
(b3V + U(1 + 2ω)

a1/t

)
3

(b3V + U(1 + 2ω)
a2/t

)
3

=
(b1V + U(1 + 2ω)

a1/t

)
3

(b2V + U(1 + 2ω)
a2/t

)
3

=
(b1V + U(1 + 2ω)

a1

)
3

(b1V + U(1 + 2ω)
t

)−1

3

·
(b2V + U(1 + 2ω)

a2

)
3

(b2V + U(1 + 2ω)
t

)−1

3

=
(b1V + U(1 + 2ω)

a1

)
3

(b2V + U(1 + 2ω)
a2

)
3

·
(b1V − U(1 + 2ω)

t

)
3

(b2V − U(1 + 2ω)
t

)
3
.
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Since (ai, 3(b2
i V

2+3U2)) = (ai, 3(3U2+dV 2)) = 1 (i = 1, 2) and t | (b1+b2)
we see that

(b1V − U(1 + 2ω)
t

)
3

(b2V − U(1 + 2ω)
t

)
3

=
( (b1V − U(1 + 2ω))(b2V − U(1 + 2ω))

t

)
3

=
(b1b2V

2 − (b1 + b2)UV (1 + 2ω)− 3U2

t

)
3

=
(b1b2V

2 − 3U2

t

)
3

= 1.

Hence the result follows.

Lemma 2.4. Let a, b ∈ Z with ab 6= 0. Suppose

F (a) =
∏

3- ordpa

p
∏

ordpa≡1 (mod 3)
p=3 or ordpa≥4

p,

where p runs over all distinct prime divisors of a. If F (a) - b, then x3 −
3ax− ab is irreducible in Z[x].

Proof. For i = 1, 2 let

mi =
∏

p|a
ordpa≡i (mod 3)

p,

where p runs over all distinct prime divisors of a such that 3 | (ordpa− i).
Then clearly a = m1m

2
2n

3 for some integer n. If x3−3ax−ab is irreducible
in Z[x], then x3 − 3ax − ab = 0 for some x ∈ Z. For such an integer x
we have a | x3 and so n3 | x3. Hence n | x. Set y = x/n. Then y ∈ Z
and y3 − 3m1m

2
2ny − bm1m

2
2 = 0. Clearly m1m2 | y3 and so m1m2 | y.

Set z = y/(m1m2). Then z ∈ Z and m2
1m2z

3 − 3m1m2nz − b = 0. Thus
m1m2(m1, 3n) | b. That is F (a) | b, which contradicts the assumption.
Hence the lemma is proved.

Lemma 2.5. Suppose u, v, d ∈ Z, dv(u2 − dv2) 6= 0 and (u, v) = 1. Let
u2 − dv2 = 2α3rW (2 - W, 3 - W ) and let w be the product of all distinct
prime divisors of W . If a, b, c, k, x, y ∈ Z, b2−4ac = −3k2d, (a(ax2+bxy+
cy2), 6ky(u2 − dv2)) = 1 , 3 | ku

(k,v) and w
(u,w) | k, then

( (2ax + by)v + kuy + 2kuyω

ax2 + bxy + cy2

)
3

=





ωδ(ord3k−ord3v−r−1)
( bv−ku(1+2ω)

a

)
3

if 2 | kuvdy,

ω±(α+1)+δ(ord3k−ord3v−r−1)
( bv−ku(1+2ω)

a

)
3

if 2 - kuvdy and x ≡ kuvb±1
2 (mod 2),
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where
δ =

ku

3(k, v)
· v

(k, v)
(2ax + by)y.

Proof. Since 3 - a(ax2 + bxy + cy2) and 4a(ax2 + bxy + cy2) = (2ax +
by)2 + 3k2dy2 we see that 3 - 2ax + by. Observing that 3 | ku

(k,v) and
( v
(k,v) ,

k
(k,v)u) = 1 we find 3 - v

(k,v) and hence 3 - v
(v,ky) .

Let

A = (2ax + by)
v

(v, ky)
and B =

kuy

(v, ky)
=

ku

(k, v)
· y

(v/(k, v), y)
.

By the above, it is clear that

A ≡ ±1 (mod 3) and B ≡ 0 (mod 3).

Notice that

(ax2 + bxy + cy2, (v, ky)) = ((ax2 + bxy + cy2, ky), v) = 1.

So we have
( (2ax + by)v + kuy + 2kuyω

ax2 + bxy + cy2

)
3

=
( A + B + 2Bω

ax2 + bxy + cy2

)
3
.

Since

(2.2)

4a(ax2 + bxy + cy2)
v2

(v, ky)2

=
(
(2ax + by)2 + 3k2dy2

) v2

(v, ky)2

= (2ax + by)2
v2

(v, ky)2
+

3k2u2y2

(v, ky)2
+ 3(dv2 − u2)

k2y2

(v, ky)2

= A2 + 3B2 + 3(dv2 − u2)
k2y2

(v, ky)2

and
(u, v) = (a(ax2 + bxy + cy2), 3ky(u2 − dv2)) = 1

we see that

(a(ax2 + bxy + cy2)v2/(v, ky)2, A2 + 3B2)

= (a(ax2 + bxy + cy2)v2/(v, ky)2, 3(u2 − dv2)k2y2/(v, ky)2) = 1.

Thus,
(A + B + 2Bω

a

)
3

( A + B + 2Bω

ax2 + bxy + cy2

)
3

(A + B + 2Bω

v2/(v, ky)2
)

3
6= 0.
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Hence ( (2ax + by)v + kuy + 2kuyω

ax2 + bxy + cy2

)
3

=
( A + B + 2Bω

ax2 + bxy + cy2

)
3

=
( A + B + 2Bω

a(ax2 + bxy + cy2)v2/(v, ky)2
)

3

(A + B + 2Bω

av2/(v, ky)2
)−1

3
.

Note that 3 - v
(v,ky) and (a, ky) = 1. We see that

(A + B + 2Bω

av2/(v, ky)2
)−1

3
=

(A−B − 2Bω

av2/(v, ky)2
)

3

=
(A−B − 2Bω

a

)
3

(A−B − 2Bω

v/(v, ky)

)2

3

=
( bvy

(v,ky) − kuy
(v,ky) (1 + 2ω)

a

)
3

(−B(1 + 2ω)
v/(v, ky)

)2

3

=
(bvy − kuy(1 + 2ω)

a

)
3

( −3B2

v/(v, ky)

)
3

=
(bv − ku(1 + 2ω)

a

)
3

and

ord3
ky

(v, ky)
= ord3(ky)− ord3(v, ky) = ord3k + ord3y − ord3v.

Set s = ord3k + ord3y − ord3v. We may assume
ky

(v, ky)
= 2β3sM(2 -M, 3 -M).

If A 6≡ B (mod 2), we have
(A + B + 2Bω

4

)
3

=
(A + B + 2Bω

2

)2

3
=

(A + B

2

)2

3
= 1.

Since

4a(ax2 + bxy + cy2)
v2

(v, ky)2
≡ (2ax + by)2 + 3k2dy2 ≡ 1 (mod 3),

using (1.2), (1.4), (1.5), (1.6) and (2.2) we see that
( A + B + 2Bω

a(ax2 + bxy + cy2)v2/(v, ky)2
)

3

=
( A + B + 2Bω

4a(ax2 + bxy + cy2)v2/(v, ky)2
)

3
=

(4a(ax2 + bxy + cy2)v2/(v, ky)2

A + B + 2Bω

)
3

=
(A2 + 3B2 + 3(dv2 − u2)k2y2/(v, ky)2

A + B + 2Bω

)
3

=
(3(dv2 − u2)k2y2/(v, ky)2

A + B + 2Bω

)
3

=
(2α+2β3r+2s+1WM2

A + B + 2Bω

)
3

=
( 2

A + B + 2Bω

)α+2β

3

(3r+2s+1WM2

A + B + 2Bω

)
3

=
(A + B + 2Bω

2

)α+2β

3

(3r+2s+1WM2

A + B + 2Bω

)
3

=
(3r+2s+1WM2

A + B + 2Bω

)
3
.
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If A ≡ B (mod 2), then 4 | (A2 + 3B2) and 2 - v
(v,ky) . Applying (1.2) and

(2.2) we see that
( A + B + 2Bω

a(ax2 + bxy + cy2)v2/(v, ky)2
)

3

=
(a(ax2 + bxy + cy2)v2/(v, ky)2

A + B + 2Bω

)
3

=
(a(ax2 + bxy + cy2)v2/(v, ky)2

(A + B)/2 + Bω

)
3

=
( 1

4 (A2 + 3B2) + 3
4 (dv2 − u2)k2y2/(v, ky)2

(A + B)/2 + Bω

)
3

=
( 3

4 (dv2 − u2)k2y2/(v, ky)2

(A + B)/2 + Bω

)
3

=
(2α+2β−23r+2s+1WM2

(A + B)/2 + Bω

)
3

=
( 2

(A + B)/2 + Bω

)α+2β−2

3

(3r+2s+1WM2

A + B + 2Bω

)
3
.

By (1.1) and (1.2) we have
( 2

(A + B)/2 + Bω

)
3

=
( (A + B)/2 + Bω

2

)
3

=





( (A+B)/2
2

)
3

= 1 if 2 | B and A + B ≡ 2 (mod 4),(
1−ω

2

)
3

= ω2 if AB ≡ 1 (mod 4),(
ω
2

)
3

= ω if AB ≡ 3 (mod 4).

If 2 | B and A+B ≡ 0 (mod 4), as
(

A+B+2Bω
a(ax2+bxy+cy2)v2/(v,ky)2

)
3
6= 0 we must

have
(

2α+2β−2

(A+B)/2+Bω

)
3
6= 0. But

(
2

(A+B)/2+Bω

)
3

= 0. Hence α + 2β − 2 = 0.
Thus, putting the above together we obtain

( (2ax + by)v + kuy + 2kuyω

ax2 + bxy + cy2

)
3

(bv − ku(1 + 2ω)
a

)−1

3

=
( A + B + 2Bω

a(ax2 + bxy + cy2)v2/(v, ky)2
)

3

=





(
3r+2s+1WM2

A+B+2Bω

)
3

if AB ≡ 0 (mod 2),

ω2(α+2β−2)
(

3r+2s+1WM2

A+B+2Bω

)
3

if AB ≡ 1 (mod 4),

ωα+2β−2
(

3r+2s+1WM2

A+B+2Bω

)
3

if AB ≡ 3 (mod 4).

Suppose that p is a prime divisor of W . Then clearly p | w. Since
w

(u,w) | k we see that w | ku and hence p | ku. If p | v, we must have p | u

since u2 = dv2 + 2α3rW . But (u, v) = 1, so p - v. Hence p | ku
(k,v) and

therefore p | B. So we have
( W

A + B + 2Bω

)
3

=
(A + B + 2Bω

W

)
3

=
∏

p|W

(A + B + 2Bω

p

)
3

=
∏

p|W

(A

p

)
3

= 1,
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where in the products p runs over all prime divisors of W . As M | B we
have ( M

A + B + 2Bω

)
3

=
(A + B + 2Bω

M

)
3

=
( A

M

)
3

= 1.

By Lemma 2.1 we also have

( 3
A + B + 2Bω

)
3

= ω
2B(A+B)

3 = ω−
AB
3 .

Thus

(3r+2s+1WM2

A + B + 2Bω

)
3

=
( 3

A + B + 2Bω

)r+2s+1

3

( W

A + B + 2Bω

)
3

( M

A + B + 2Bω

)2

3

= ω−
AB(r+2s+1)

3 = ω
AB
3 (s−r−1).

Note that 2 - B implies 2 - ky
(v,ky) and so β = 0. Combining the above we

get

( (2ax + by)v + kuy + 2kuyω

ax2 + bxy + cy2

)
3

=





ω
AB
3 (s−r−1)

( bv−ku(1+2ω)
a

)
3

if AB ≡ 0 (mod 2),

ω2(α−2)+ AB
3 (s−r−1)

( bv−ku(1+2ω)
a

)
3

if AB ≡ 1 (mod 4),

ωα−2+ AB
3 (s−r−1)

( bv−ku(1+2ω)
a

)
3

if AB ≡ 3 (mod 4).

Clearly

AB

3
= (2ax + by)

v

(v, ky)
· kuy

3(v, ky)
=

ku

3(k, v)
· v

(k, v)
· (2ax + by)y
(v/(k, v), y)2

=
δ

(v/(k, v), y)2
.

Since 3 - v
(k,v) we see that 3 - ( v

(k,v) , y) and hence ( v
(k,v) , y)2 ≡ 1 (mod 3).

Thus
AB

3
≡ δ (mod 3).

If 2 | AB, then clearly 2 | δ. Conversely, if 2 | δ, then 2 | AB when
2 - ( v

(k,v) , y). Since 2 | ( v
(k,v) , y) implies 2 | y and so 2 | A, we see that

2 | AB ⇐⇒ 2 | δ and hence 2 - AB ⇐⇒ 2 - δ.

When 2 - δ, we must have 2 - ( v
(k,v) , y) and hence

AB

3
=

δ

(v/(k, v), y)2
≡ δ (mod 4).

11



From the above we obtain( (2ax + by)v + kuy + 2kuyω

ax2 + bxy + cy2

)
3

=





ωδ(s−r−1)
( bv−ku(1+2ω)

a

)
3

if δ ≡ 0 (mod 2),

ω2(α−2)+δ(s−r−1)
( bv−ku(1+2ω)

a

)
3

if δ ≡ 3 (mod 4),

ωα−2+δ(s−r−1)
( bv−ku(1+2ω)

a

)
3

if δ ≡ 1 (mod 4).

If 3 | y, since 3 - v
(k,v) we see that

B

3
=

ku

3(k, v)
· y

(v/(k, v), y)
≡ 0 (mod 3) and δ ≡ AB

3
≡ 0 (mod 3).

Thus
ωδs = ωδ(ord3y+ord3k−ord3v) = ωδ(ord3k−ord3v).

Hence( (2ax + by)v + kuy + 2kuyω

ax2 + bxy + cy2

)
3

=

{
ωδ(ord3k−ord3v−r−1)

( bv−ku(1+2ω)
a

)
3

if δ ≡ 0 (mod 2),

ω±(α+1)+δ(ord3k−ord3v−r−1)
( bv−ku(1+2ω)

a

)
3

if δ ≡ ±1 (mod 4).

To see the result, as b2 − 4ac = −3k2d and 2 - a we note that

δ ≡ ku

3(k, v)
· v

(k, v)
· by2 ≡ ku

3(k, v)
· v

(k, v)
· kdy ≡ kuvdy (mod 2)

and if 2 - kuvdy, then

δ ≡ kuv

3
(2ax + by)y ≡ −kuv(2axy + b) ≡ 2x− kuvb (mod 4).

3. Cubic characters on H(−3k2d).
For later convenience we first introduce the following notation.

Definition 3.1. Suppose u, v, d ∈ Z, dv(u2− dv2) 6= 0 and (u, v) = 1. Let
u2 − dv2 = 2α3rW (2 - W, 3 - W ) and let w be the product of all distinct
prime divisors of W . Define

k2(u, v, d) =





2 if d ≡ 2, 3 (mod 4),
2 if d ≡ 1 (mod 8), α > 0 and α ≡ 0, 1 (mod 3),
1 otherwise,

k3(u, v, d) =





3ord3v+1 if 3 | r and 3 - u,
9 if 3 - r and 3 - u,
3 if 3 - r − 2 and 3 ‖ u,
1 otherwise

and k(u, v, d) = k2(u, v, d)k3(u, v, d)w/(u,w).

We are now in a position to give the following key result, which plays a
central role in the paper.
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Theorem 3.1. Suppose u, v, d ∈ Z, dv(u2 − dv2) 6= 0 and (u, v) = 1.
If a, b, c, x, y ∈ Z, k = k(u, v, d), b2 − 4ac = −3k2d and (a(ax2 + bxy +
cy2), 6y(u2 − dv2)) = 1, then

( (2ax + by)v + kuy + 2kuyω

ax2 + bxy + cy2

)
3

=
(bv − ku− 2kuω

a

)
3
.

Proof. Let
δ =

ku

3(k, v)
· v

(k, v)
(2ax + by)y.

From Definition 3.1 we know that

3
∣∣ ku

(k, v)
,

w

(u,w)

∣∣ k, ord3k ≥ ord3v

and
ku

3(k, v)
(ord3k − ord3v − r − 1) ≡ 0 (mod 3).

Thus by Lemma 2.5 we have

( (2ax + by)v + kuy + 2kuyω

ax2 + bxy + cy2

)
3

=

{ ( bv−ku(1+2ω)
a

)
3

if 2 | kuvdy,

ω±(α+1)
( bv−ku(1+2ω)

a

)
3

if 2 - kuvdy and x ≡ kuvb±1
2 (mod 2).

If α ≡ 0, 1 (mod 3), from Definition 3.1 we see that 2 | kuvd. Thus we
always have

( (2ax + by)v + kuy + 2kuyω

ax2 + bxy + cy2

)
3

=
(bv − ku(1 + 2ω)

a

)
3
.

This completes the proof.

Corollary 3.1. Suppose u, v, d ∈ Z, dv(u2 − dv2) 6= 0, (u, v) = 1 and
k = k(u, v, d). If a, b, c, a′, b′, c′ ∈ Z, (a, b, c) ∼ (a′, b′, c′), b2−4ac = −3k2d
and (aa′, 6(u2 − dv2)) = 1, then

(b′v − ku(1 + 2ω)
a′

)
3

=
(bv − ku(1 + 2ω)

a

)
3
.

Proof. Since (a, b, c) ∼ (a′, b′, c′), there are integers α, β, γ, δ such that
αδ − βγ = 1 and

a(αX + βY )2 + b(αX + βY )(γX + δY ) + c(γX + δY )2

= a′X2 + b′XY + c′Y 2.
13



Hence

(3.1)
a′ = aα2 + bαγ + cγ2, b′ = 2aαβ + b(αδ + βγ) + 2cγδ,

c′ = aβ2 + bβδ + cδ2.

Set a∗ = a/(a, γ), c∗ = (a, γ)c, x = α and y = γ/(a, γ). We see that

a∗x2 + bxy + c∗y2 =
aα2 + bαγ + cγ2

(a, γ)
=

a′

(a, γ)

and

b′γ = 2aαβγ + b(αγδ + βγ2) + 2cγ2δ

≡ 2aαβγ + b(αγδ + βγ2)− 2δ(aα2 + bαγ)

= (βγ − αδ)(2aα + bγ) = −2aα− bγ (mod |a′|).
Hence

b′y =
b′γ

(a, γ)
≡ −2

aα

(a, γ)
− b

γ

(a, γ)
= −2a∗x− by (mod |a∗x2 + bxy + c∗y2|).

Since (aa′, 6(u2 − dv2)) = 1 we see that (a∗(a∗x2 + bxy + c∗y2), 6(u2 −
dv2)) = 1. Observe that (α, γ) = 1 since αδ − βγ = 1. We find (a∗x, y) =
(αa/(a, γ), γ/(a, γ)) = 1. Hence

(a∗(a∗x2 + bxy + c∗y2), 6y(u2 − dv2)) = 1.

Clearly we have b2 − 4a∗c∗ = b2 − 4ac = −3k2d. Thus, applying the
above and Theorem 3.1 we get

(b′v − ku(1 + 2ω)
a′/(a, γ)

)
3

=
( b′v − ku(1 + 2ω)

a∗x2 + bxy + c∗y2

)
3

=
(−b′yv + kuy(1 + 2ω)

a∗x2 + bxy + c∗y2

)
3

=
( (2a∗x + by)v + kuy(1 + 2ω)

a∗x2 + bxy + c∗y2

)
3

=
(bv − ku(1 + 2ω)

a∗

)
3

=
(bv − ku(1 + 2ω)

a/(a, γ)

)
3
.

Notice that b′ ≡ bαδ = b(1 + βγ) ≡ b (mod (a, γ)). From the above we see
that

(b′v − ku(1 + 2ω)
a′

)
3

=
(b′v − ku(1 + 2ω)

(a, γ)

)
3

(b′v − ku(1 + 2ω)
a′/(a, γ)

)
3

=
(bv − ku(1 + 2ω)

(a, γ)

)
3

(bv − ku(1 + 2ω)
a/(a, γ)

)
3

=
(bv − ku(1 + 2ω)

a

)
3
.

This is the result.
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Theorem 3.2. Suppose u, v, d ∈ Z, dv(u2 − dv2) 6= 0, (u, v) = 1 and
k = k(u, v, d). For [a, b, c] ∈ H(−3k2d) with (a, 6(u2 − dv2)) = 1 define
χ([a, b, c]) =

(
bv−ku−2kuω

a

)
3
. Then χ is a character on H(−3k2d). More-

over, if F (u2 − dv2) - 2u, where F (t) is given as in Lemma 2.4, then χ is
a surjective homomorphism from H(−3k2d) to {1, ω, ω2}.

Proof. Let [a, b, c] ∈ H(−3k2d). By [S3, Lemma 3.1] we may assume
(a, 6(u2 − dv2)) = 1 with no loss of generality. From Corollary 3.1 we see
that χ is well defined. Since b2 − 4ac = −3k2d we have

(bv−ku(1+2ω))(bv+ku(1+2ω)) = b2v2+3k2u2 ≡ 3k2(u2−dv2) (mod |a|)
and so

(bv − ku(1 + 2ω)
a

)
3

(bv + ku(1 + 2ω)
a

)
3

=
(3k2(u2 − dv2)

a

)
3

= 1.

Thus χ([a, b, c]) ∈ {1, ω, ω2}. Applying Lemma 2.3 we find that χ is a
character on H(−3k2d).

Since F (u2−dv2) - 2u, from Lemma 2.4 we see that x3−3(u2−dv2)x−
2u(u2 − dv2) is irreducible over Q. Thus, by [Se] there are infinitely many
primes p such that x3−3(u2−dv2)x−2u(u2−dv2) ≡ 0 (mod p) is unsolvable.
For such a prime p with p - 6duv(u2 − dv2), by [S1, Corollary 4.1] we have
−3((2u)2 − 4(u2 − dv2)) ≡ (2u)2x2 (mod p) for some integer x ∈ C1(p).
That is −3dv2 ≡ u2x2 (mod p) for some x ∈ C1(p). Let b ∈ Z be such that
bv ≡ −kux (mod p). Since b 6≡ b + p (mod 2) we may choose b ∈ Z such
that b ≡ kd (mod 2) and bv ≡ −kux (mod p). Then −bv/(ku) ∈ C1(p)
and b2 ≡ −3k2d (mod p). Set c = (b2 + 3k2d)/(4p). Then c ∈ Z and so
[p, b, c] ∈ H(−3k2d). Clearly

χ([p, b, c]) =
(bv − ku(1 + 2ω)

p

)
3

=
(− bv

ku + 1 + 2ω

p

)
3

= ω.

Thus χ([p, b, c]2) = χ([p, b, c])2 = ω2 and χ([p, b, c]3) = χ([p, b, c])3 = 1.
Hence χ is a surjective homomorphism from H(−3k2d) to {1, ω, ω2}. This
completes the proof.

Corollary 3.2. Suppose u, v, d ∈ Z, dv(u2 − dv2) 6= 0, (u, v) = 1 and
k = k(u, v, d). Let

G(u, v, d) =
{

[a, b, c]
∣∣ [a, b, c] ∈ H(−3k2d), (a, 6(u2 − dv2)) = 1,

(bv − ku(1 + 2ω)
a

)
3

= 1
}

.

Then G(u, v, d) is a subgroup of H(−3k2d). Moreover, if F (u2− dv2) - 2u,
then |G(u, v, d)| = h(−3k2d)/3 and so 3 | h(−3k2d).

Proof. Let χ be the character given in Theorem 3.2. Then clearly
G(u, v, d) = Ker χ. Thus G(u, v, d) is a subgroup of H(−3k2d). If F (u2 −
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dv2) - 2u, then χ is a surjective homomorphism and so H(−3k2d)/Ker χ ∼=
{1, ω, ω2}. Hence |G(u, v, d)| = h(−3k2d)/3. This finishes the proof.
Remark 3.1 Let χ be the character defined in Theorem 3.2. Let A =
{K | K ∈ H(−3k2d), K = K−1}. For K ∈ A we have χ(K) = χ(K−1) =
χ(K)−1 and so χ(K) = 1. Thus A is a subgroup of G(u, v, d). For [a, b, c] ∈
H(−3k2d) with b = 0, a = b or a = c, we must have [a, b, c] ∈ A and so
[a, b, c] ∈ G(u, v, d).

4. Criteria for (u+v
√

d
u−v

√
d
)

p−( p
3 )

3 (mod p).

Theorem 4.1. Let p > 3 be a prime, u, v, d ∈ Z, (u, v) = 1, v 6= 0,
p - d(u2 − dv2), and let k = k(u, v, d) be given by Definition 3.1. Let
a, b, c, x, y ∈ Z, p = ax2+bxy+cy2, b2−4ac = −3k2d and (a, 6(u2−dv2)) =
1. If p - a, then

(
u− v

√
d

u + v
√

d

) p−( p
3 )

3

≡
(u2 − dv2

p

)
(u2 − dv2)−

p−( p
3 )

6 (u + v
√

d)
p−( p

3 )
3

≡





1 (mod p) if
( bv−ku(1+2ω)

a

)
3

= 1,
1
2

(− 1− (p
3 ) 2ax+by

kdy

√
d
)

(mod p) if
( bv−ku(1+2ω)

a

)
3

= ω,
1
2

(− 1 + (p
3 ) 2ax+by

kdy

√
d
)

(mod p) if
( bv−ku(1+2ω)

a

)
3

= ω2.

If p | a, then

(
u− v

√
d

u + v
√

d

) p−( p
3 )

3

≡
(u2 − dv2

p

)
(u2 − dv2)−

p−( p
3 )

6 (u + v
√

d)
p−( p

3 )
3

≡





1 (mod p) if
( bv−ku(1+2ω)

p

)
3

= 1,

1
2

(− 1 + (p
3 ) b

√
d

kd

)
(mod p) if

( bv−ku(1+2ω)
p

)
3

= ω,

1
2

(− 1− (p
3 ) b

√
d

kd

)
(mod p) if

( bv−ku(1+2ω)
p

)
3

= ω2.

Proof. As p > 3 and p - u2 − dv2, we see that p - k. If p | a, since
b2 − 4ac = −3k2d we have b2/k2 ≡ −3d (mod p). Putting s = −b/k in
Lemma 2.2 we see that for i = 0, 1, 2,

(
u− v

√
d

u + v
√

d

) p−( p
3 )

3

≡
(−1 + (p

3 ) b
√

d
kd

2

)i

⇐⇒
(bv − ku(1 + 2ω)

p

)
3

=
(− b

kv + u(1 + 2ω)
p

)
3

= ωi.

Now assume p - a. We first show that p - y and (ax, y) = 1. If p | y,
then p | x since p - a. Hence p = ax2 + bxy + cy2 ≡ 0 (mod p2). But
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this is impossible. So p - y and hence (ax, y) = 1 since (ax, y) | p. This
together with (a, 6(u2 − dv2)) = 1 yields (ap, 6y(u2 − dv2)) = 1. Note that
4ap = (2ax+by)2+3k2dy2. We see that ( 2ax+by

ky )2 ≡ −3d (mod p). Putting
s = 2ax+by

ky in Lemma 2.2 and then applying Theorem 3.1 we get

(
u− v

√
d

u + v
√

d

) p−( p
3 )

3

≡
(−1− (p

3 ) 2ax+by
kdy

√
d

2

)i

(mod p)

⇐⇒
( (2ax+by)v

ky + u(1 + 2ω)

p

)
3

= ωi

⇐⇒
( (2ax + by)v + kuy(1 + 2ω)

p

)
3

= ωi

⇐⇒
(bv − ku− 2kuω

a

)
3

= ωi,

where i ∈ {0, 1, 2}.
Now we claim that (u + v

√
d)p−( p

3 ) ≡ (u2 − dv2)(1−( p
3 ))/2 (mod p). If

p ≡ 1 (mod 3), then (d
p ) = (−3

p ) = (p
3 ) = 1. Since p - u2 − dv2 we have

(u + v
√

d)p−( p
3 ) ≡ 1 (mod p) by Fermat’s little theorem. If p ≡ 2 (mod 3),

then (d
p ) = (−3

p ) = (p
3 ) = −1 and so (

√
d)p =

√
d · d p−1

2 ≡ −
√

d (mod p).
Thus

(u + v
√

d)p−( p
3 ) = (u + v

√
d)(u + v

√
d)p ≡ (u + v

√
d)(up + vp(

√
d)p)

≡ (u + v
√

d)(u− v
√

d) = u2 − dv2 (mod p).

Hence the assertion is true and so

(
u− v

√
d

u + v
√

d

) p−( p
3 )

3

=
(u2 − dv2)

p−( p
3 )

3

(u + v
√

d)
2(p−( p

3 ))
3

=
(u2 − dv2)

p−( p
3 )

3 (u + v
√

d)
p−( p

3 )
3

(u + v
√

d)p−( p
3 )

≡ (u2 − dv2)
p−( p

3 )
3 − 1−( p

3 )
2 (u + v

√
d)

p−( p
3 )

3

= (u2 − dv2)
p−1
2 − p−( p

3 )
6 (u + v

√
d)

p−( p
3 )

3

≡
(u2 − dv2

p

)
(u2 − dv2)−

p−( p
3 )

6 (u + v
√

d)
p−( p

3 )
3 (mod p).

Now putting all the above together we prove the theorem.

Theorem 4.2. Suppose that p > 3 is a prime, u, v, d ∈ Z, (u, v) = 1, v 6=
0, (−3d

p ) = 1, p - u2 − dv2 and k = k(u, v, d). Then
(

u−v
√

d
u+v

√
d

)(p−( p
3 ))/3

≡
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1 (mod p) if and only if p is represented by some class in the set

G(u, v, d) =
{

[a, b, c]
∣∣ [a, b, c] ∈ H(−3k2d), (a, 6(u2 − dv2)) = 1,

(bv − ku(1 + 2ω)
a

)
3

= 1
}

.

Moreover, G(u, v, d) is a subgroup of H(−3k2d). If F (u2 − dv2) - 2u, then
|G(u, v, d)| = h(−3k2d)/3.

Proof. Since (−3d
p ) = 1 and p - k, by the theory of binary quadratic forms

and [S3, Lemma 3.1], p can be represented by some primitive quadratic form
ax2 + bxy + cy2 of discriminant −3k2d with (a, 6(u2− dv2)) = 1, and there
exists a primitive quadratic form (a′, b′, c′) such that (a′, 6p(u2− dv2)) = 1
and (a′, b′, c′) ∼ (a, b, c). As (a′, b′, c′) ∼ (a, b, c), we see that p = a′x′2 +
b′x′y′ + c′y′2 for some x′, y′ ∈ Z and b′2 − 4a′c′ = b2 − 4ac = −3k2d. Thus
applying Theorem 4.1 and Corollary 3.1 we get

(u− v
√

d

u + v
√

d

) p−( p
3 )

3 ≡ 1 (mod p)

⇐⇒
(b′v − ku(1 + 2ω)

a′

)
3

= 1 ⇐⇒
(bv − ku(1 + 2ω)

a

)
3

= 1.

This together with Corollary 3.2 gives the result.

Corollary 4.1. Suppose that p > 3 is a prime, m ∈ Z, p - m(m + 3),
sp(m) ∈ Zp and sp(m)2 ≡ m (mod p). Then the following statements are
equivalent:

(i) sp(m) ∈ C0(p).

(ii)
(

3−√−3m
3+
√−3m

) p−( p
3 )

3 ≡ 1 (mod p).

(iii) p is represented by some class [a, b, c] ∈ H(9k2m) with (a, 6(m +
3)) = 1 and

( b−3k(1+2ω)
a

)
3

= 1, where k = k(3, 1,−3m).

Proof. Putting u = 3, v = 1, d = −3m and s = 3sp(m) in Lemma 2.2
and Theorem 4.2 we obtain the result.

When m = −1,−2,−5,−6,−7,−15, the criteria for sp(m) ∈ C0(p) have
been given by the author in [S1, Theorem 5.2]. For example, sp(−1) ∈
C0(p) if and only if p is represented by x2 + 81y2 or 2x2 + 2xy + 41y2.

Corollary 4.2. Let p be a prime of the form 3n + 1 and 4p = L2 + 27M2

with L,M ∈ Z. Suppose d ∈ Z and q is a prime satisfying q > 3, q -
d(d + 3) and q | (L2 − 9dM2)(−dL2 + 81M2). Then q is a cubic residue
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of p if and only if q is represented by some class [a, b, c] ∈ H(9k2d) with
(a, 6(d + 3)) = 1 and

( b−3k(1+2ω)
a

)
3

= 1, where k = k(3, 1,−3d).

Proof. From [S1, (5.4)] we know that q is a cubic residue of p if and
only if sq(d) ∈ C0(q), where sq(d) ∈ Z satisfies sq(d)2 ≡ d (mod q). Now
applying Corollary 4.1 we obtain the result.

As an example, if p ≡ 1 (mod 3) and q > 5 are primes with 4p =
L2 +27M2(L,M ∈ Z) and q | (L2 +135M2)(5L2 +27M2), then q is a cubic
residue of p if and only if q is represented by x2 +135y2 or 5x2 +27y2. See
[S1, Theorem 5.3(ii)].

Now we can use Theorems 4.1 and 4.2 to deduce cubic residuacity.
Let p be a prime of the form 3k+1 and m,n ∈ Z with p - mn. Since mn3

is a cubic residue of p if and only if m is a cubic residue of p, we need only
to consider cubic residuacity for cubefree integers m with m 6≡ 1 (mod 3).

Lemma 4.1. Let m be a cubefree integer with m 6= 0,±1 and m 6≡
1 (mod 3). Let m0 be the product of all distinct primes q satisfying q | m
and q > 3. Then

k
( 1 + m

(2, 1 + m)
,

1−m

(2, 1 + m)
, 1

)
=

3 + (−1)m

2
k3m0,

where

(4.1) k3 =





1 if m ≡ 8 (mod 9),
3 if m ≡ 2, 5 (mod 9),
9 if m ≡ 0 (mod 3).

Proof. Let u = (1 + m)/(1 + m, 2), v = (1 −m)/(1 + m, 2) and d = 1.
It is easily seen that

(4.2) (u, v) = 1,
u− v

√
d

u + v
√

d
= m, u2 − dv2 =

{
m if 2 - m,
4m if 2 | m.

Since m is cubefree, we have ord2m ∈ {0, 1, 2}. Thus, by Definition 3.1 we
have

k2(u, v, d) =
3 + (−1)m

2
=

{
1 if 2 - m,
2 if 2 | m.

As ord3m ∈ {0, 1, 2}, from Definition 3.1 we see that k3(u, v, d) = k3. Now
the result follows from the above and Definition 3.1.

Theorem 4.3. Let p ≡ 1 (mod 3) be a prime. Let m be a cubefree integer
with m 6≡ 0,±1 (mod p) and m 6≡ 1 (mod 3). Let m0 be the product of
all distinct primes q satisfying q | m and q > 3. Let k3 be given by (4.1)
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and k = 3+(−1)m

2 k3m0. Suppose p = ax2 + bxy + cy2 with a, b, c, x, y ∈ Z,
b2 − 4ac = −3k2 and (a, 6m) = 1. If p - a, then

m
p−1
3 ≡





1 (mod p) if
( (m−1)b+k(m+1)(1+2ω)

a

)
3

= 1,

−ax+(k+b)y/2
ky (mod p) if

( (m−1)b+k(m+1)(1+2ω)
a

)
3

= ω,
ax−(k−b)y/2

ky (mod p) if
( (m−1)b+k(m+1)(1+2ω)

a

)
3

= ω2.

If p | a, then

m
p−1
3 ≡





1 (mod p) if
( (m−1)b+k(m+1)(1+2ω)

p

)
3

= 1,
b−k
2k (mod p) if

( (m−1)b+k(m+1)(1+2ω)
p

)
3

= ω,

− b+k
2k (mod p) if

( (m−1)b+k(m+1)(1+2ω)
p

)
3

= ω2.

Proof. Let u = (1 + m)/(1 + m, 2), v = (1 −m)/(1 + m, 2) and d = 1.
By (4.2), Lemma 4.1 and Theorem 4.1 we obtain the result.

From Theorem 4.3 and the theory of reduced forms we deduce the fol-
lowing results.

Corollary 4.3. Let p be a prime of the form 3n + 1. Then

2
p−1
3 ≡

{
1 (mod p) if p = x2 + 27y2,
7x−2y

6y (mod p) if p = 7x2 + 2xy + 4y2 6= 7,

3
p−1
3 ≡

{
1 (mod p) if p = x2 + xy + 61y2,

− 7x+6y
9y (mod p) if p = 7x2 + 3xy + 9y2 6= 7,

5
p−1
3 ≡





1 (mod p) if p = x2 + xy + 169y2, 13x2 + xy + 13y2,
19x−6y

15y (mod p) if p = 19x2 + 3xy + 9y2 6= 19,
7x−5y

15y (mod p) if p = 7x2 + 5xy + 25y2 6= 7,

6
p−1
3 ≡





1 (mod p) if p = x2 + 243y2, 7x2 + 6xy + 36y2,

− 13x+11y
18y (mod p) if p = 13x2 + 4xy + 19y2 6= 13,

− 61x+10y
18y (mod p) if p = 61x2 + 2xy + 4y2 6= 61,

31x−3y
18y (mod p) if p = 31x2 + 12xy + 9y2 6= 31.
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Corollary 4.4. Let p be a prime of the form 3n + 1. Then

7
p−1
3 ≡





1 (mod p) if p = x2 + xy + 331y2, 19x2 + 11xy + 19y2,
37x−9y

21y (mod p) if p = 37x2 + 3xy + 9y2 6= 37,

− 13x+15y
21y (mod p) if p = 13x2 + 9xy + 27y2 6= 13,

10
p−1
3 ≡





1 (mod p) if p = x2 + 75y2, 3x2 + 25y2,
7x−2y

10y (mod p) if p = 7x2 + 6xy + 12y2 6= 7,

− 19x+6y
10y (mod p) if p = 19x2 + 2xy + 4y2 6= 19,

17
p−1
3 ≡





1 (mod p) if p = x2 + xy + 217y2, 3x2 + 3xy + 73y2,

− 7x+9y
17y (mod p) if p = 7x2 + xy + 31y2 6= 7,

− 13x+14y
17y (mod p) if p = 13x2 + 11xy + 19y2 6= 13.

Remark 4.1. Let p ≡ 1 (mod 3) be a prime and 4p = L2 + 27M2 with
L,M ∈ Z and L ≡ 1 (mod 3). When 2 - M we choose the sign of M so
that M ≡ L (mod 4). From Theorem 1.3 and [S1, Example 2.1] (or [Wi])
we deduce

2
p−1
3 ≡

{
1 (mod p) if 2 | M ,
1
2

(− 1− L
3M

)
(mod p) if 2 -M ,

3
p−1
3 ≡

{
1 (mod p) if 3 | M ,
1
2

(− 1± L
3M

)
(mod p) if M ≡ ±1 (mod 3),

5
p−1
3 ≡

{
1 (mod p) if 5 | LM ,
1
2

(− 1∓ L
3M

)
(mod p) if L

3M ≡ ±1,±2 (mod 5),

6
p−1
3 ≡





1 (mod p) if M ≡ 0, 1 (mod 6),
1
2

(− 1− L
3M

)
(mod p) if M ≡ 2, 3 (mod 6),

1
2

(− 1 + L
3M

)
(mod p) if M ≡ 4, 5 (mod 6).

For p 6= 7 we also have

7
p−1
3 ≡

{
1 (mod p) if 7 | LM ,
1
2

(− 1± L
3M

)
(mod p) if L

3M ≡ ±1,±4 (mod 7),

10
p−1
3 ≡





1 (mod p) if 2 | M and 5 | LM,

or if 2 - M and L
3M ≡ −1,−2 (mod 5),

1
2

(− 1− L
3M

)
(mod p) if 2 | M and L

3M ≡ 1, 2 (mod 5),
or if 2 - M and 5 | LM ,

1
2

(− 1 + L
3M

)
(mod p) if 2 | M and L

3M ≡ −1,−2 (mod 5),

or if 2 - M and L
3M ≡ 1, 2 (mod 5),

17
p−1
3 ≡

{
1 (mod p) if 17 | LM or L

3M ≡ ±1,±3 (mod 17),
1
2

(− 1∓ L
3M

)
(mod p) if ± L

3M ≡ 2, 4,−5,−6, 7,−8 (mod 17).
21



Now let us compare these results with Corollaries 4.3 and 4.4. As 4(7x2+
2xy +4y2) = (x+4y)2 +27x2 and 4(7x2 +3xy +9y2) = (x+6y)2 +27x2, it
is easily seen that the above results for 2

p−1
3 , 3

p−1
3 (mod p) are equivalent

to those given in Corollary 4.3. As for 10
p−1
3 , 17

p−1
3 (mod p), the results

in Corollary 4.4 are better than the above results. For general results
concerning m

p−1
3 (mod p), Theorem 4.3 seems better than Theorem 1.3.

If p = A2 + 3B2 with A,B ∈ Z and A ≡ 1 (mod 3), from [BEW, p. 147]
or [S4, (2.12)] we also have

2
p−1
3 ≡

{
1 (mod p) if B ≡ 0 (mod 3),
1
2

(− 1− A
B

)
(mod p) if B ≡ 1 (mod 3).

Here we state the similar result for 3
p−1
3 (mod p) :

3
p−1
3 ≡

{
1 (mod p) if B ≡ 0,±A (mod 9),
1
2

(− 1− A
B

)
(mod p) if B ≡ 6, A + 6 (mod 9).

Theorem 4.4. Let p ≡ 1 (mod 3) be a prime. Let m be a cubefree integer
with m 6≡ 0,±1 (mod p) and m 6≡ 1 (mod 3). Let m0 be the product of all
distinct primes q satisfying q | m and q > 3. Let k3 be given by (4.1) and
k = 3+(−1)m

2 k3m0. Then m (or −m) is a cubic residue of p if and only if
p can be represented by some class in the set

G(m) =
{

[a, b, c]
∣∣ [a, b, c] ∈ H(−3k2), (a, 6m) = 1,

( (m− 1)b + k(m + 1)(1 + 2ω)
a

)
3

= 1
}

.

Moreover, G(m) is a subgroup of index 3 in H(−3k2).

Proof. Let u = (1 + m)/(1 + m, 2), v = (1 −m)/(1 + m, 2) and d = 1.
From (4.2), Lemma 4.1 and Theorem 4.2 we see that G(m) = G(u, v, d).
Hence, it follows from Theorem 4.2 that m

p−1
3 ≡ 1 (mod p) if and only

if p is represented by some class in G(m). Moreover, G(m) is a subgroup
of H(−3k2). For m = 2, clearly k = 6 and so |G(2)| = 1 = h(−3k2)/3.
For m 6= 2, it is easily seen that F (u2 − dv2) - 2u. Thus, by Theorem
4.2 we get |G(m)| = h(−3k2)/3. To complete the proof, we note that
m

p−1
3 ≡ 1 (mod p) if and only if m is a cubic residue of p.

5. Criteria for ε
(p−( p

3 ))/3

d (mod p).
Let d > 1 be a squarefree integer, and let εd be the fundamental unit

of the quadratic field Q(
√

d). Then εd = (m + n
√

d)/2 for some m,n ∈ N
and m2 − dn2 = ±4. Let p ≡ 1 (mod 3) be a prime such that (d

p ) = 1.
If d ∈ {2, 3, 5}, in 1973 E. Lehmer [L2] proved that εd is a cubic residue
modulo p if and only if p = x2+27dy2 for some x, y ∈ Z. In [S1], the author
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gave the criteria for εd to be a cubic residue of p in the cases d = 6, 15, 21.
For a general related result one may consult [W].

When p > 3 is a prime such that (d
p ) = (p

3 ), in the section we completely

determine the value of ε
(p−( p

3 ))/3

d (mod p) in terms of appropriate binary
quadratic forms.

Theorem 5.1. Suppose m,n, d ∈ Z and m2 − dn2 = −4. Let p > 3 be a
prime not dividing d. Let

k =





1 if d 6≡ 2 (mod 4) and 9 | m,
2 if d ≡ 2 (mod 4) and 9 | m,
3 if d 6≡ 2 (mod 4) and 9 - m,
6 if d ≡ 2 (mod 4) and 9 - m.

Suppose p = ax2 + bxy + cy2 with a, b, c, x, y ∈ Z, b2 − 4ac = −3k2d and
(a, 6) = 1. If p - a, then

(m + n
√

d

2

) p−( p
3 )

3

≡





(p
3 ) (mod p) if

( bn−km(1+2ω)
a

)
3

= 1,
1
2

(− (p
3 )− 2ax+by

kdy

√
d
)

(mod p) if
( bn−km(1+2ω)

a

)
3

= ω,
1
2

(− (p
3 ) + 2ax+by

kdy

√
d
)

(mod p) if
( bn−km(1+2ω)

a

)
3

= ω2.

If p | a, then

(m + n
√

d

2

) p−( p
3 )

3 ≡





(p
3 ) (mod p) if

( bn−km(1+2ω)
p

)
3

= 1,

1
2

(− (p
3 ) + b

√
d

kd

)
(mod p) if

( bn−km(1+2ω)
p

)
3

= ω,

1
2

(− (p
3 )− b

√
d

kd

)
(mod p) if

( bn−km(1+2ω)
p

)
3

= ω2.

Proof. Let u = m/(m,n) and v = n/(m,n). Since (−4
3 ) = −1 we see

that 3 - n. Thus 3 - (m,n) and 3 - v. Clearly u2 − dv2 = −4/(m,n)2 and
d 6≡ 3 (mod 4). Using Definition 3.1 we see that

k2(u, v, d) =
{

2 if d ≡ 2 (mod 4),
1 if d 6≡ 2 (mod 4),

k3(u, v, d) =
{

3 if 9 - m,
1 if 9 | m

and so k(u, v, d) = k2(u, v, d)k3(u, v, d) = k. Since
(u2 − dv2

p

)
(u2 − dv2)−

p−( p
3 )

6 (u + v
√

d)
p−( p

3 )
3

=
(−4/(m,n)2

p

)
(−4)−

p−( p
3 )

6 (m, n)
p−( p

3 )
3

(m + n
√

d

(m,n)

) p−( p
3 )

3

= (−1)
p−1
2 +

p−( p
3 )

6

(m + n
√

d

2

) p−( p
3 )

3
=

(p

3

)(m + n
√

d

2

) p−( p
3 )

3
,
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by the above and Theorem 4.1 we obtain the result.
Remark 5.1 If d ≡ 2 (mod 3), from m2 − dn2 = −4 we deduce 3 - m and
so 9 - m.

Note that (2, 0, 27) ∼ (29,−4, 2) and (4, 3, 9) ∼ (19, 13, 4). From Theo-
rem 5.1 and the theory of reduced forms we deduce the following corollaries.

Corollary 5.1. Let p be a prime such that p ≡ 1, 5, 7, 11 (mod 24). Then

(1 +
√

2)
p−1
3 ≡

{
1 (mod p) if p = x2 + 54y2,

− 1
2 − 7x+3y

12y

√
2 (mod p) if p = 7x2 + 6xy + 9y2 6= 7,

(1 +
√

2)
p+1
3 ≡

{
−1 (mod p) if p = 2x2 + 27y2,
1
2 + 5x+y

12y

√
2 (mod p) if p = 5x2 + 2xy + 11y2 6= 5.

Corollary 5.2. Let p be an odd prime such that p ≡ 1, 2, 4, 8 (mod 15).
Then

(1 +
√

5
2

) p−1
3 ≡

{
1 (mod p) if p = x2 + xy + 34y2,

− 1
2 + 38x+13y

30y

√
5 (mod p) if p = 19x2 + 13xy + 4y2 6= 19,

(1 +
√

5
2

) p+1
3 ≡

{
−1 (mod p) if p = 5x2 + 5xy + 8y2,
1
2 − 34x+y

30y

√
5 (mod p) if p = 17x2 + xy + 2y2 6= 17.

Corollary 5.3. Let p > 3 be a prime such that ( p
17 ) = (p

3 ). Then

(4 +
√

17)
p−1
3 ≡

{
1 (mod p) if p = x2 + xy + 115y2,

− 1
2 + 26x+3y

102y

√
17 (mod p) if p = 13x2 + 3xy + 9y2 6= 13,

(4 +
√

17)
p+1
3 ≡

{
−1 (mod p) if p = 11x2 + 5xy + 11y2,
1
2 − 10x+y

102y

√
17 (mod p) if p = 5x2 + xy + 23y2 6= 5.

Corollary 5.4. Let p > 3 be a prime such that ( p
41 ) = (p

3 ). Then

(32 + 5
√

41)
p−1
3 ≡

{
1 (mod p) if p = x2 + xy + 277y2,

− 1
2 + 62x+3y

246y

√
41 (mod p) if p = 31x2 + 3xy + 9y2 6= 31,

(32 + 5
√

41)
p+1
3 ≡

{
−1 (mod p) if p = 17x2 + 7xy + 17y2,
1
2 + 22x+9y

246y

√
41 (mod p) if p = 11x2 + 9xy + 27y2 6= 11.
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Theorem 5.2. Suppose m,n, d ∈ Z and m2 − dn2 = −4. Let p > 3 be a
prime such that (−3d

p ) = 1. Let k be as in Theorem 5.1 and

Si(m,n, d) =
{

[a, b, c]
∣∣ [a, b, c] ∈ H(−3k2d), a ≡ i (mod 3),

2 - a,
(bn− km(1 + 2ω)

a

)
3

= 1
}

(i = 1, 2).

(i) If p ≡ 1 (mod 3), then (m + n
√

d)/2 is a cubic residue of p if and
only if p is represented by some class in S1(m,n, d).

(ii) If p ≡ 2 (mod 3), then (m+n
√

d
2 )

p+1
3 ≡ −1 (mod p) if and only if p

is represented by some class in S2(m,n, d).

Proof. Let u = m/(m,n) and v = n/(m,n). Then (u, v) = 1, (m,n) =
1, 2 and u2 − dv2 = −4/(m,n)2. From Theorem 4.1 and the proof of
Theorem 5.1 we know that

(u− v
√

d

u + v
√

d

) p−( p
3 )

3 ≡
(p

3

)(m + n
√

d

2

) p−( p
3 )

3
(mod p).

By the proof of Theorem 5.1 we have k = k(u, v, d). Hence applying the

above and Theorem 4.2 we see that
(

m+n
√

d
2

) p−( p
3 )

3 ≡ (
p
3

)
(mod p) if and

only if p is represented by some class in the set

G(u, v, d)

=
{

[a, b, c]
∣∣ [a, b, c] ∈ H(−3k2d), (a, 6) = 1,

(bn− km(1 + 2ω)
a

)
3

= 1
}

.

Clearly G(u, v, d) = S1(m,n, d) ∪ S2(m,n, d).
Since (−3k2d

p ) = (−3d
p ) = 1, p can be represented by some class in

H(−3k2d). Suppose p = ax2 + bxy + cy2 with a, b, c, x, y ∈ Z, (a, 6) = 1
and b2 − 4ac = −3k2d. As 4ap = (2ax + by)2 + 3k2dy2 and 3 - ap, we see
that ap ≡ 1 (mod 3) and so p ≡ a (mod 3). Now combining the above with
Euler’s criterion we obtain the result.

Theorem 5.3. Suppose m,n, d ∈ Z, dn 6= 0 and m2 − dn2 = 4. Let p > 3
be a prime not dividing d. Let

k =





1 if d ≡ 0, 1 (mod 4) and 9 | m,
2 if d ≡ 2, 3 (mod 4) and 9 | m,
3ord3n+1 if d ≡ 0, 1 (mod 4) and 9 - m,
2 · 3ord3n+1 if d ≡ 2, 3 (mod 4) and 9 - m.
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Suppose p = ax2 + bxy + cy2 with a, b, c, x, y ∈ Z, b2 − 4ac = −3k2d and
(a, 6) = 1. If p - a, then

(m + n
√

d

2

) p−( p
3 )

3

≡





1 (mod p) if
( bn−km(1+2ω)

a

)
3

= 1,

− 1
2

(
1 + (p

3 ) 2ax+by
kdy

√
d
)

(mod p) if
( bn−km(1+2ω)

a

)
3

= ω,
1
2

(− 1 + (p
3 ) 2ax+by

kdy

√
d
)

(mod p) if
( bn−km(1+2ω)

a

)
3

= ω2.

If p | a, then
(m + n

√
d

2

) p−( p
3 )

3

≡





1 (mod p) if
( bn−km(1+2ω)

p

)
3

= 1,

1
2

(− 1 + (p
3 ) b

√
d

kd

)
(mod p) if

( bn−km(1+2ω)
p

)
3

= ω,

1
2

(− 1− (p
3 ) b

√
d

kd

)
(mod p) if

( bn−km(1+2ω)
p

)
3

= ω2.

Proof. Let u = m/(m,n) and v = n/(m,n). Then (u, v) = 1 and
u2 − dv2 = 4/(m,n)2. One can easily show that

k = k(u, v, d) and
(u− v

√
d

u + v
√

d

) p−( p
3 )

3 ≡
(m + n

√
d

2

) p−( p
3 )

3
(mod p).

Thus applying Theorem 4.1 we obtain the result.
Remark 5.2 If d ≡ 0, 1 (mod 3) and m2 − dn2 = 4 with m, n, d ∈ Z, we
must have 3 - m and so 9 - m.

Observe that (2, 0, 81) ∼ (83,−4, 2) and (9, 6, 10) ∼ (13, 12, 9). From
Theorem 5.3 and the theory of reduced forms we have the following results.

Corollary 5.5. Let p ≡ 1 (mod 4) be a prime. Then

(2 +
√

3)
p−( p

3 )
3

≡





1 (mod p) if p = x2 + 81y2, 2x2 + 2xy + 41y2,

− 1
2 + 13x+6y

18y

√
3 (mod p) if p = 13x2 + 12xy + 9y2 6= 13,

− 1
2 − 5x+2y

18y

√
3 (mod p) if p = 5x2 + 4xy + 17y2 6= 5.

Corollary 5.6. Let p > 3 be a prime such that p ≡ 1, 3 (mod 8). Then

(5 + 2
√

6)
p−( p

3 )
3

≡





1 (mod p) if p = x2 + 162y2, 2x2 + 81y2,

− 1
2 − 19x+3y

36y

√
6 (mod p) if p = 19x2 + 6xy + 9y2 6= 19,

− 1
2 + 11x+5y

36y

√
6 (mod p) if p = 11x2 + 10xy + 17y2 6= 11.

From Theorems 4.2, 5.3 and the proofs of Theorems 5.2 and 5.3 we have
the following theorem.
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Theorem 5.4. Suppose m,n, d ∈ Z, dn 6= 0 and m2 − dn2 = 4. Let p > 3
be a prime such that (−3d

p ) = 1. Let k be as in Theorem 5.3 and

Ti(m, n, d) =
{

[a, b, c]
∣∣ [a, b, c] ∈ H(−3k2d), a ≡ i (mod 3),

2 - a,
(bn− km(1 + 2ω)

a

)
3

= 1
}

(i = 1, 2).

(i) If p ≡ 1 (mod 3), then (m + n
√

d)/2 is a cubic residue of p if and
only if p is represented by some class in T1(m, n, d).

(ii) If p ≡ 2 (mod 3), then (m+n
√

d
2 )

p+1
3 ≡ 1 (mod p) if and only if p is

represented by some class in T2(m,n, d).

If m, n, d ∈ Z with m2 − dn2 = 4 and dn 6= 0, then clearly (m −
2)(m + 2) = dn2 and so ord3(m − 2) + ord3(m + 2) ≥ 2 ord3n. Hence
ord3(m − 2) ≥ ord3n or ord3(m + 2) ≥ ord3n. Thus we may choose the
sign of m such that ord3(m− 2) ≥ ord3n.

Theorem 5.5. Suppose m,n, d ∈ Z, m2 − dn2 = 4 and ord3(m − 2) ≥
ord3n. Let p > 3 be a prime such that p - dn. Let 2α ‖ 4(m−2)

(m−2,n)2 . Let

k2 =





2 if d ≡ 2, 3 (mod 4),
2 if d ≡ 1 (mod 8), α > 0 and α ≡ 0, 1 (mod 3),
1 otherwise,

k3 =

{
3 if 9 - m−2

(m−2,n) ,

1 if 9 | m−2
(m−2,n)

and k = k2k3.

Suppose p = ax2 + bxy + cy2 with a, b, c, x, y ∈ Z, b2 − 4ac = −3k2d and
(a, 6(8− 4m)/(m− 2, n)2) = 1. If p - a, then

(m + n
√

d

2

) p−( p
3 )

3

≡





1 (mod p) if
( bn

(m−2,n)+
k(m−2)
(m−2,n) (1+2ω)

a

)
3

= 1,

1
2

(− 1− (p
3 ) 2ax+by

kdy

√
d
)

(mod p) if
( bn

(m−2,n)+
k(m−2)
(m−2,n) (1+2ω)

a

)
3

= ω,

1
2

(− 1 + (p
3 ) 2ax+by

kdy

√
d
)

(mod p) if
( bn

(m−2,n)+
k(m−2)
(m−2,n) (1+2ω)

a

)
3

= ω2.

If p | a, then

(m + n
√

d

2

) p−( p
3 )

3

≡





1 (mod p) if
( bn

(m−2,n)+
k(m−2)
(m−2,n) (1+2ω)

p

)
3

= 1,

1
2

(− 1 + (p
3 ) b

√
d

kd

)
(mod p) if

( bn
(m−2,n)+

k(m−2)
(m−2,n) (1+2ω)

p

)
3

= ω,

1
2

(− 1− (p
3 ) b

√
d

kd

)
(mod p) if

( bn
(m−2,n)+

k(m−2)
(m−2,n) (1+2ω)

p

)
3

= ω2.
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Proof. Let u = (2−m)/(m−2, n) and v = n/(m−2, n). Then (u, v) = 1,
3 - v and u2− dv2 = 4(2−m)/(m− 2, n)2. Since ord3(u2− dv2) = ord3u−
ord3n, using Definition 3.1 we see that k2(u, v, d) = k2, k3(u, v, d) = k3 and
so k(u, v, d) = k2(u, v, d)k3(u, v, d) = k2k3 = k. It is easy to see that

m + n
√

d

2
= −u− v

√
d

u + v
√

d
and so

(m + n
√

d

2

) p−( p
3 )

3
=

(u− v
√

d

u + v
√

d

) p−( p
3 )

3
.

Now the result follows from the above and Theorem 4.1.
As an example, putting d = 7, m = −16 and n = −6 in Theorem 5.5

and noting that (25, 12, 9) ∼ (9, 6, 22) we deduce the following corollary.

Corollary 5.7. Let p > 3 be a prime.
(i) If p ≡ 1 (mod 3) and ( 7

p ) = 1, then

(8 + 3
√

7)
p−1
3

≡





1 (mod p) if p = x2 + 189y2, 7x2 + 27y2,

− 1
2 − 19x+y

42y

√
7 (mod p) if p = 19x2 + 2xy + 10y2 6= 19,

− 1
2 − 25x+6y

42y

√
7 (mod p) if p = 25x2 + 12xy + 9y2.

(ii) If p ≡ 2 (mod 3) and ( 7
p ) = −1, then

(8 + 3
√

7)
p+1
3

≡





1 (mod p) if p = 2x2 + 2xy + 95y2

or 14x2 + 14xy + 17y2,
− 1

2 − 5x+y
42y

√
7 (mod p) if p = 5x2 + 2xy + 38y2 6= 5,

− 1
2 − 11x+3y

42y

√
7 (mod p) if p = 11x2 + 6xy + 18y2 6= 11.

If m2 − dn2 = 4 with m,n, d ∈ Z, then m+n
√

d
2 · −m+n

√
d

2 = −1. Thus
for any prime p > 3,

(m + n
√

d

2

) p−( p
3 )

3 ≡ 1 (mod p) ⇐⇒
(−m + n

√
d

2

) p−( p
3 )

3 ≡ 1 (mod p).

Now from Theorem 4.2 and the proof of Theorem 5.5 we deduce the fol-
lowing result.

Theorem 5.6. Suppose m,n, d ∈ Z, m2 − dn2 = 4 and ord3(m − 2) ≥
ord3n. Let p > 3 be a prime such that p - dn and (−3d

p ) = 1. Let k be given

as in Theorem 5.5. Then
(±m+n

√
d

2

)(p−( p
3 ))/3 ≡ 1 (mod p) if and only if p

is represented by some class in the set

L(m, n, d) =
{

[a, b, c]
∣∣∣ [a, b, c] ∈ H(−3k2d),

(
a,

6(8− 4m)
(m− 2, n)2

)
= 1,

( bn
(m−2,n) + k(m−2)

(m−2,n) (1 + 2ω)

a

)
3

= 1
}

.

Moreover, L(m,n, d) is a subgroup of H(−3k2d).
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6. Applications to Lucas sequences.
For P,Q ∈ Z and an odd prime p with (−3(P 2−4Q)

p ) = 1, in the section
we will determine U(p−( p

3 ))/3(P,Q) and V(p−( p
3 ))/3(P, Q) modulo p, where

Un(P,Q) and Vn(P, Q) are the Lucas sequences given by

U0(P, Q) = 0, U1(P, Q) = 1, Un+1(P, Q) = PUn(P, Q)−QUn−1(P,Q)(n ≥ 1)

and

V0(P, Q) = 2, V1(P, Q) = P, Vn+1(P, Q) = PVn(P, Q)−QVn−1(P,Q)(n ≥ 1).

It is well known that
(6.1)

Un(P,Q) =





1√
P 2−4Q

{(P+
√

P 2−4Q

2

)n − (P−
√

P 2−4Q

2

)n}
if P 2 − 4Q 6= 0,

n(P
2 )n−1 if P 2 − 4Q = 0

and

(6.2) Vn(P,Q) =
(P +

√
P 2 − 4Q

2

)n

+
(P −

√
P 2 − 4Q

2

)n

.

Theorem 6.1. Let p > 3 be a prime, and P, Q ∈ Z with p - Q and
(−3(P 2−4Q)

p ) = 1. Assume P 2−4Q = df2 (d, f ∈ Z) and p = ax2+bxy+cy2

with a, b, c, x, y ∈ Z, (a, 6p · 4Q/(P, f)2) = 1 and b2 − 4ac = −3k2d, where
k = k(P/(P, f), f/(P, f), d). Then

U(p−( p
3 ))/3(P, Q)

≡





0 (mod p) if
( bf

(P,f)− kP
(P,f) (1+2ω)

a

)
3

= 1,

− 2ax+by
kdfy (−Q

p )(−Q)
p−( p

3 )
6 (mod p) if

( bf
(P,f)− kP

(P,f) (1+2ω)

a

)
3

= ω,

2ax+by
kdfy (−Q

p )(−Q)
p−( p

3 )
6 (mod p) if

( bf
(P,f)− kP

(P,f) (1+2ω)

a

)
3

= ω2

and

V(p−( p
3 ))/3(P, Q)

≡





2(p
3 )(−Q

p )(−Q)
p−( p

3 )
6 (mod p) if

( bf
(P,f)− kP

(P,f) (1+2ω)

a

)
3

= 1,

−(p
3 )(−Q

p )(−Q)
p−( p

3 )
6 (mod p) if

( bf
(P,f)− kP

(P,f) (1+2ω)

a

)
3
6= 1.

Proof. Since p - aQ and (a, y) | p we see that p - ky and (a, y) = 1. Let
u = P/(P, f) and v = f/(P, f). Then (u, v) = 1 and u2−dv2 = 4Q/(P, f)2.
For n ∈ N it is clear that

(u2 − dv2

p

)
(u2 − dv2)−n(u± v

√
d)2n =

(Q

p

)
Q−n

(P ± f
√

d

2

)2n

.
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Thus applying (6.1) and (6.2) we see that

(u2 − dv2

p

)
(u2 − dv2)−n

{
(u + v

√
d)2n − (u− v

√
d)2n

}

=
(Q

p

)
Q−nf

√
dU2n(P, Q)

and

(u2 − dv2

p

)
(u2 − dv2)−n

{
(u + v

√
d)2n + (u− v

√
d)2n

}

=
(Q

p

)
Q−nV2n(P,Q).

Now set n = (p− (p
3 ))/6. If

( bv−ku(1+2ω)
a

)
3

= 1, then
( b(−v)−ku(1+2ω)

a

)
3

=
1. Observe that k(u, v, d) = k(u,−v, d). By the above and Theorem 4.1 we
have (Q

p )Q−nf
√

dU2n(P, Q) ≡ 1− 1 = 0 (mod p) and (Q
p )Q−nV2n(P,Q) ≡

1 + 1 = 2 (mod p). Thus

p | U2n(P,Q) and V2n(P, Q) ≡ 2
(Q

p

)
Qn (mod p).

If
( bv−ku(1+2ω)

a

)
3

= ω±1, then
( b(−v)−ku(1+2ω)

a

)
3

= ω∓1. From the above
and Theorem 4.1 we have

(Q

p

)
Q−nf

√
dU2n(P, Q) ≡

−1∓ (p
3 ) 2ax+by

kdy

√
d

2
−
−1± (p

3 ) 2ax+by
kdy

√
d

2

= ∓
(p

3

)2ax + by

kdy

√
d (mod p)

and

(Q

p

)
Q−nV2n(P,Q) ≡

−1∓ (p
3 ) 2ax+by

kdy

√
d

2
+
−1± (p

3 ) 2ax+by
kdy

√
d

2
= −1 (mod p).

Thus
U2n(P,Q) ≡ ∓

(p

3

)(Q

p

)
Qn 2ax + by

kdfy
(mod p)

and
V2n(P,Q) ≡ −

(Q

p

)
Qn (mod p).

To complete the proof, we note that
(−1

p

)·(−1)n =
(−1

p

)(
3
p

)
=

(−3
p

)
=

(
p
3

)
.

Remark 6.1 According to (6.1), (6.2) and Theorem 4.1, the criteria for
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p | U(p−( p
3 ))/3(P, Q) and V(p−( p

3 ))/3(P,Q) (mod p) in Theorem 6.1 are also
true when p = a.

If p - Q and (−3(P 2−4Q)
p ) = −1, from [S2, Theorem 2.1] we know that

U p−( p
3 )

3

(P, Q) ≡ 1
P 2 − 4Q

(−3Q

p

)
Q

p−( p
3 )

6 −1(−Px2 + 2Qx + 2PQ) (mod p)

and

V p−( p
3 )

3

(P, Q) ≡
(Q

p

)
Q

p−( p
3 )

6 −1(x2 − 2Q) (mod p),

where x is the unique solution of the congruence X3 − 3QX − PQ ≡
0 (mod p).

Putting P = 6, Q = 3m + 9, d = −3m and f = 2 in Theorem 6.1 we
deduce the following result.

Corollary 6.1. Let p > 3 be a prime, and m ∈ Z with p - m + 3 and
(m

p ) = 1. Assume p = ax2+bxy+cy2 with a, b, c, x, y ∈ Z, (a, 6p(m+3)) = 1
and b2 − 4ac = 9k2m, where k = k(3, 1,−3m). Then

U(p−( p
3 ))/3(6, 3m + 9)

≡





0 (mod p) if
( b−3k(1+2ω)

a

)
3

= 1,

2ax+by
6kmy (−3m−9

p )(−3m− 9)
p−( p

3 )
6 (mod p) if

( b−3k(1+2ω)
a

)
3

= ω,

− 2ax+by
6kmy (−3m−9

p )(−3m− 9)
p−( p

3 )
6 (mod p) if

( b−3k(1+2ω)
a

)
3

= ω2

and

V(p−( p
3 ))/3(6, 3m + 9)

≡




2(p
3 )(−3m−9

p )(−3m− 9)
p−( p

3 )
6 (mod p) if

( b−3k(1+2ω)
a

)
3

= 1,

−(p
3 )(−3m−9

p )(−3m− 9)
p−( p

3 )
6 (mod p) if

( b−3k(1+2ω)
a

)
3
6= 1.

If m,n, d ∈ Z and m2 + 4 = dn2, from (6.1) and (6.2) we have

Ur(m,−1) =
1

n
√

d

{(m + n
√

d

2

)r

−
(m− n

√
d

2

)r}
,

Vr(m,−1) =
(m + n

√
d

2

)r

+
(m− n

√
d

2

)r

.

Thus applying Theorem 5.1 or Theorem 6.1 we deduce the following result.
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Corollary 6.2. Suppose d,m, n ∈ Z and m2 + 4 = dn2. Let p > 3 be a
prime such that p - m2 + 4 and (−3d

p ) = 1. Let k be as in Theorem 5.1.
Suppose p = ax2 + bxy + cy2 with a, b, c, x, y ∈ Z, b2 − 4ac = −3k2d and
(a, 6p) = 1. Then

U p−( p
3 )

3

(m,−1) ≡





0 (mod p) if
( bn−km(1+2ω)

a

)
3

= 1,

− 2ax+by
kdny (mod p) if

( bn−km(1+2ω)
a

)
3

= ω,
2ax+by
kdny (mod p) if

( bn−km(1+2ω)
a

)
3

= ω2

and

V p−( p
3 )

3

(m,−1) ≡
{

2(p
3 ) (mod p) if

( bn−km(1+2ω)
a

)
3

= 1,

−(p
3 ) (mod p) if

( bn−km(1+2ω)
a

)
3

= ω, ω2.

From (6.1), (6.2) and Corollaries 5.6, 5.7, 5.3, 5.4 (or Theorem 6.1) we
have the following four corollaries.

Corollary 6.3. Let p > 3 be a prime such that p ≡ 1, 3 (mod 8). Then

U p−( p
3 )

3

(10, 1) ≡





0 (mod p) if p = x2 + 162y2, 2x2 + 81y2,

− 19x+3y
72y (mod p) if p = 19x2 + 6xy + 9y2 6= 19,

11x+5y
72y (mod p) if p = 11x2 + 10xy + 17y2 6= 11

and

V p−( p
3 )

3

(10, 1) ≡
{

2 (mod p) if p = x2 + 162y2, 2x2 + 81y2,
−1 (mod p) otherwise.

Corollary 6.4. Let p > 3 be a prime.
(i) If p ≡ 1 (mod 3) and ( 7

p ) = 1, then

U p−1
3

(16, 1) ≡





0 (mod p) if p = x2 + 189y2, 7x2 + 27y2,

− 19x+y
126y (mod p) if p = 19x2 + 2xy + 10y2 6= 19,

− 25x+6y
126y (mod p) if p = 25x2 + 12xy + 9y2

and

V p−1
3

(16, 1) ≡
{

2 (mod p) if p = x2 + 189y2, 7x2 + 27y2,
−1 (mod p) otherwise.

(ii) If p ≡ 2 (mod 3) and ( 7
p ) = −1, then

U p+1
3

(16, 1) ≡





0 (mod p) if p = 2x2 + 2xy + 95y2

or 14x2 + 14xy + 17y2,
− 5x+y

126y (mod p) if p = 5x2 + 2xy + 38y2 6= 5,

− 11x+3y
126y (mod p) if p = 11x2 + 6xy + 18y2 6= 11
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and

V p+1
3

(16, 1) ≡





2 (mod p) if p = 2x2 + 2xy + 95y2

or 14x2 + 14xy + 17y2,
−1 (mod p) otherwise.

Corollary 6.5. Let p be a prime greater than 3 such that ( p
17 ) = (p

3 ).
Then

U p−( p
3 )

3

(8,−1) ≡





0 (mod p) if p = x2 + xy + 115y2

or p = 11x2 + 5xy + 11y2,
26x+3y
102y (mod p) if p = 13x2 + 3xy + 9y2 6= 13,

− 10x+y
102y (mod p) if p = 5x2 + xy + 23y2 6= 5

and

V p−( p
3 )

3

(8,−1) ≡





2 (mod p) if p = x2 + xy + 115y2,
−2 (mod p) if p = 11x2 + 5xy + 11y2,
−1 (mod p) if p = 13x2 + 3xy + 9y2,
1 (mod p) if p = 5x2 + xy + 23y2.

Corollary 6.6. Let p be a prime greater than 3 such that ( p
41 ) = (p

3 ).
Then

U p−( p
3 )

3

(64,−1) ≡





0 (mod p) if p = x2 + xy + 277y2

or p = 17x2 + 7xy + 17y2,
62x+3y
1230y (mod p) if p = 31x2 + 3xy + 9y2 6= 31,

22x+9y
1230y (mod p) if p = 11x2 + 9xy + 27y2 6= 11

and

V p−( p
3 )

3

(64,−1) ≡





2 (mod p) if p = x2 + xy + 277y2,
−2 (mod p) if p = 17x2 + 7xy + 17y2,
−1 (mod p) if p = 31x2 + 3xy + 9y2,
1 (mod p) if p = 11x2 + 9xy + 27y2.

Putting m = 3, n = 1, d = 13 and k = 3 in Corollary 6.2 and observing
that (10, 7, 10) ∼ (13, 13, 10), (25, 7, 4) ∼ (4, 1, 22), (43, 37, 10) ∼ (9,−3, 10)
and (47, 5, 2) ∼ (2,−1, 44) we deduce the following result.

Corollary 6.7. Let p > 3 be a prime.
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(i) If p ≡ 1 (mod 3) and ( p
13 ) = 1, then

U p−1
3

(3,−1) ≡





0 (mod p) if p = x2 + xy + 88y2

or p = 10x2 + 7xy + 10y2,
50x+7y

39y (mod p) if p = 25x2 + 7xy + 4y2,

− 86x+37y
39y (mod p) if p = 43x2 + 37xy + 10y2 6= 43

and

V p−1
3

(3,−1) ≡





2 (mod p) if p = x2 + xy + 88y2

or p = 10x2 + 7xy + 10y2,
−1 (mod p) otherwise.

(ii) If p ≡ 2 (mod 3) and ( p
13 ) = −1, then

U p+1
3

(3,−1) ≡





0 (mod p) if p = 11x2 + xy + 8y2,
10x+3y

39y (mod p) if p = 5x2 + 3xy + 18y2 6= 5,
94x+5y

39y (mod p) if p = 47x2 + 5xy + 2y2 6= 47

and

V p+1
3

(3,−1) ≡
{ −2 (mod p) if p = 11x2 + xy + 8y2,

1 (mod p) otherwise.

From Corollary 6.2 we also deduce the following results.

Corollary 6.8. Let p > 5 be a prime such that (−30
p ) = 1.

(i) If p ≡ 1 (mod 3), then

U p−1
3

(6,−1) ≡





0 (mod p) if p = x2 + 270y2, 10x2 + 27y2,

− 31x+3y
60y (mod p) if p = 31x2 + 6xy + 9y2 6= 31,

− 13x+4y
60y (mod p) if p = 13x2 + 8xy + 22y2 6= 13

and

V p−1
3

(6,−1) ≡
{

2 (mod p) if p = x2 + 270y2, 10x2 + 27y2,

−1 (mod p) otherwise.

(ii) If p ≡ 2 (mod 3), then

U p+1
3

(6,−1) ≡





0 (mod p) if p = 2x2 + 135y2, 5x2 + 54y2,
11x+4y

60y (mod p) if p = 11x2 + 8xy + 26y2 6= 11,
17x+6y

60y (mod p) if p = 17x2 + 12xy + 18y2 6= 17

and

V p+1
3

(6,−1) ≡
{ −2 (mod p) if p = 2x2 + 135y2, 5x2 + 54y2,

1 (mod p) otherwise.
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Corollary 6.9. Let p > 3 be a prime such that (p
5 )( p

17 ) = (p
3 ).

(i) If p ≡ 1 (mod 3), then

U p−1
3

(9,−1) ≡





0 (mod p) if p = x2 + xy + 64y2

or p = 3x2 + 3xy + 22y2,
38x+7y

85y (mod p) if p = 19x2 + 7xy + 4y2 6= 19,
14x+5y

85y (mod p) if p = 7x2 + 5xy + 10y2 6= 7

and

V p−1
3

(9,−1) ≡





2 (mod p) if p = x2 + xy + 64y2

or p = 3x2 + 3xy + 22y2,

−1 (mod p) otherwise.

(ii) If p ≡ 2 (mod 3), then

U p+1
3

(9,−1) ≡





0 (mod p) if p = 8x2 + xy + 8y2

or p = 5x2 + 5xy + 14y2,
14x+y
17y (mod p) if p = 35x2 + 5xy + 2y2,

− 22x+3y
85y (mod p) if p = 11x2 + 3xy + 6y2 6= 11

and

V p+1
3

(9,−1) ≡





−2 (mod p) if p = 8x2 + xy + 8y2

or p = 5x2 + 5xy + 14y2,
1 (mod p) otherwise.

Corollary 6.10. Let p > 3 be a prime such that (−78
p ) = 1.

(i) If p ≡ 1 (mod 3), then

U p−1
3

(10,−1) ≡





0 (mod p) if p = x2 + 702y2, 13x2 + 54y2,

− 19x+y
156y (mod p) if p = 19x2 + 2xy + 37y2 6= 19,

− 79x+3y
156y (mod p) if p = 79x2 + 6xy + 9y2 6= 79

and

V p−1
3

(10,−1) ≡
{

2 (mod p) if p = x2 + 702y2, 13x2 + 54y2,

−1 (mod p) otherwise.
(ii) If p ≡ 2 (mod 3), then

U p+1
3

(10,−1) ≡





0 (mod p) if p = 2x2 + 351y2, 26x2 + 27y2,

− 29x+9y
156y (mod p) if p = 29x2 + 18xy + 27y2 6= 29,

41x+6y
156y (mod p) if p = 41x2 + 12xy + 18y2 6= 41

and

V p+1
3

(10,−1) ≡
{ −2 (mod p) if p = 2x2 + 351y2, 26x2 + 27y2,

1 (mod p) otherwise.
We note that the congruences for U(p−( p

3 ))/3(1,−1) and U(p−( p
3 ))/3(2,−1)

(mod p) have been given by the author in [S1].
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Lemma 6.1. Let p > 3 be a prime and P, Q ∈ Z with p - PQ(P 2 − 4Q).
Let n = (p− (p

3 ))/6.

(i) If p | Un(P,Q) or p | U2n(P, Q), then
(−3(P 2−4Q)

p

)
= 1.

(ii) Suppose
(−3(P 2−4Q)

p

)
= 1 and P 2 − 4Q = df2 (d, f ∈ Z). Then

p | U2n(P, Q) if and only if
(

P+f
√

d
2

)2n ≡ (Q
p )Qn (mod p).

(iii) p | U2n(P, Q) if and only if V2n(P,Q) ≡ 2(Q
p )Qn (mod p).

(iv) p | Un(P, Q) if and only if (Q
p ) = 1 and p | U2n(P,Q).

Proof. Let Um = Um(P, Q) and Vm = Vm(P, Q). For k,m ∈ N it is
well known that Um | Ukm. Thus Un | U2n and U2n | Up−( p

3 ). If p | Un or

p | U2n, we must have p | Up−( p
3 ) and so (−3(P 2−4Q)

p ) = 1 by [S1, Lemma
6.1]. This proves (i).

Now suppose (−3(P 2−4Q)
p ) = 1 and P 2 − 4Q = df2 with d, f ∈ Z. From

(6.1) we see that

p | U2n ⇐⇒
(P − f

√
d

P + f
√

d

)2n

≡ 1 (mod p).

By the proof of Theorem 4.1, we have
(P − f

√
d

P + f
√

d

)2n

≡
(P 2 − df2

p

)
(P 2 − df2)−n(P + f

√
d)2n

=
(Q

p

)
Q−n

(P + f
√

d

2

)2n

(mod p).

Thus (ii) is true.
Now let us consider (iii). If p | U2n, by (i) and (ii) we have

(−3(P 2−4Q)
p

)
=

1 and
(P±

√
P 2−4Q

2

)2n ≡ (Q
p )Qn (mod p). Thus V2n ≡ 2(Q

p )Qn (mod p) by
(6.2). If V2n ≡ 2(Q

p )Qn (mod p), as V 2
m− (P 2− 4Q)U2

m = 4Qm we see that
4Q2n − (P 2 − 4Q)U2

2n = 4Q2n and hence p | U2n. So (iii) holds.
Finally we consider (iv). According to [S1, Lemma 6.1], p | Un if and

only if V2n ≡ 2Qn (mod p). On the other hand, p | Un implies p | U2n and so
V2n ≡ 2(Q

p )Qn (mod p) by (iii). Hence p | Un implies (Q
p ) = 1. Conversely,

if p | U2n and (Q
p ) = 1, by (iii) we have V2n ≡ 2(Q

p )Qn = 2Qn (mod p).
Hence p | Un. So (iv) holds and the proof is complete.

Suppose that d > 1 is squarefree and εd = (m+n
√

d)/2. Then the norm
N(εd) = (m2 − dn2)/4 = ±1. From Lemma 6.1(ii) we see that if p is a
prime such that p ≡ 1 (mod 3), p - mn and (d

p ) = 1, then

(6.3)
εd is a cubic residue of p ⇐⇒

(m + n
√

d

2

) p−1
3 ≡ 1 (mod p)

⇐⇒ p | U p−1
3

(m,N(εd)).

36



Theorem 6.2. Let p > 3 be a prime, and P, Q ∈ Z with p - PQ(P 2−4Q).
Let P 2 − 4Q = df2 (d, f ∈ Z) and k = k(P/(P, f), f/(P, f), d). Let

M(P,Q, f) =
{

[a, b, c]
∣∣∣ [a, b, c] ∈ H(−3k2d),

(a, 24Q/(P, f)2) = 1,
( bf

(P,f) − kP
(P,f) (1 + 2ω)

a

)
3

= 1
}

.

(i) M(P, Q, f) is a subgroup of H(−3k2d). If F (4Q/(P, f)2) - (2P/(P, f)),
then |M(P,Q, f)| = h(−3k2d)/3.

(ii) p | U(p−( p
3 ))/3(P, Q) if and only if p is represented by a class in

M(P, Q, f).
(iii) p | U(p−( p

3 ))/6(P, Q) if and only if (Q
p ) = 1 and p is represented by

a class in M(P, Q, f).

Proof. Set u = P/(P, f) and v = f/(P, f). Then (u, v) = 1, u2 − dv2 =
4Q/(P, f)2 and k = k(u, v, d). It is easy to see that M(P,Q, f) = G(u, v, d).
Thus applying Corollary 3.2 we see that (i) holds. Using Lemma 6.1 and
Theorem 6.1 (or Theorem 4.2) we deduce (ii) and (iii). So the theorem is
proved.
Remark 6.2 In [S1], the author misunderstood Spearman-Williams’ result
in [SW1] since a subgroup of index 3 may be not the subgroup consisting
of all cubes. Thus (5.5), Lemma 5.1, Theorem 5.4, Corollaries 5.3, 5.4 and
6.4 in [S1] are somewhat wrong. Now we have Theorem 6.2 instead of [S1,
Corollary 6.4], and Corollary 4.2 instead of [S1, Corollary 5.4].

From Lemma 6.1 and Theorem 5.2 (or Theorem 6.2) we have:

Corollary 6.11. Let p > 3 be a prime, m ∈ Z, p - m(m2+4) and m2+4 =
dn2 (d, n ∈ Z). Let k be as in Theorem 5.1. Then p | U(p−( p

3 ))/3(m,−1)
if and only if p is represented by some class [a, b, c] ∈ H(−3k2d) with
(a, 6) = 1 and

( bn−km(1+2ω)
a

)
3

= 1.

From Corollaries 6.3-6.6 or Theorem 6.2 we have:

Corollary 6.12. Let p > 3 be a prime.
(i) If p 6= 5, then p | U p−( p

3 )
3

(10, 1) if and only if p is represented by

x2 + 162y2 or 2x2 + 81y2.
(ii) If p 6= 7, then p | U p−( p

3 )
3

(16, 1) if and only if p is represented by

x2 + 189y2, 7x2 + 27y2, 2x2 + 2xy + 95y2 or 14x2 + 14xy + 17y2.
(iii) If p 6= 17, then p | U p−( p

3 )
3

(8,−1) if and only if p is represented by

x2 + xy + 115y2 or 11x2 + 5xy + 11y2.
(iv) If p 6= 5, 41, then p | U p−( p

3 )
3

(64,−1) if and only if p is represented

by x2 + xy + 277y2 or 17x2 + 7xy + 17y2.
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Corollary 6.13. Let p 6= 2, 3, 13 be a prime.
(i) If p ≡ 1 (mod 6), then

p | U p−1
3

(3,−1) ⇐⇒ p = x2 + 351y2, 13x2 + 27y2,

p | U p−1
6

(3,−1) ⇐⇒ p = x2 + 1404y2, 13x2 + 108y2.

Moreover, if p ≡ 1 (mod 6) and ( p
13 ) = 1, then ε13 = (3+

√
13)/2 is a cubic

residue of p if and only if p is represented by x2 + 351y2 or 13x2 + 27y2.
(ii) If p ≡ 5 (mod 6), then

p | U p+1
3

(3,−1) ⇐⇒ p = 11x2 + 2xy + 32y2,

p | U p+1
6

(3,−1) ⇐⇒ p = 41x2 + 40xy + 44y2.

Proof. By Lemma 6.1(i), we may assume ( p
13 ) = (p

3 ). From Corollary
6.7 and Theorem 6.2 we see that if p ≡ 1 (mod 6), then

p | U p−1
3

(3,−1) ⇐⇒ p = x2 + xy + 88y2, 10x2 + 7xy + 10y2

p | U p−1
6

(3,−1) ⇐⇒ p = 4k + 1 = x2 + xy + 88y2, 10x2 + 7xy + 10y2;

if p ≡ 5 (mod 6), then

p | U p+1
3

(3,−1) ⇐⇒ p = 11x2 + xy + 8y2 ⇐⇒ p = 11x2 + 2xy + 32y2,

p | U p+1
6

(3,−1) ⇐⇒ p = 4k + 1 = 11x2 + 2xy + 32y2.

For p ≡ 1 (mod 6) we see that

p = x2 + xy + 88y2 ⇐⇒ p = x2 + xy + 88y2 with 2 | y
⇐⇒ p = x2 + 2xy + 352y2 = (x + y)2 + 351y2

⇐⇒ p = t2 + 351y2

and

p = 10x2 + 7xy + 10y2

⇐⇒ p = 10x2 + 7xy + 10y2 with 2 - xy

⇐⇒ p = 10
(x + y

2
+

x− y

2

)2

+ 7
(x + y

2
+

x− y

2

)(x + y

2
− x− y

2

)

+ 10
(x + y

2
− x− y

2

)2

with 2 - xy

⇐⇒ p = 10(t + u)2 + 7(t + u)(t− u) + 10(t− u)2

⇐⇒ p = 13u2 + 27t2.
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Thus

p | U p−1
6

(3,−1) ⇐⇒ p = 4k + 1 = x2 + xy + 88y2, 10x2 + 7xy + 10y2

⇐⇒ p = 4k + 1 = x2 + 351y2, 13x2 + 27y2

⇐⇒ p = x2 + 351y2, 13x2 + 27y2 with 2 | y
⇐⇒ p = x2 + 1404y2, 13x2 + 108y2.

Now applying (6.3) we obtain (i).
For p ≡ 5 (mod 6) we have

p | U p+1
6

(3,−1) ⇐⇒ p = 4k + 1 = 11x2 + 2xy + 32y2

⇐⇒ p = 11x2 + 2xy + 32y2 with 2 | x− y

⇐⇒ p = 11(y + 2t)2 + 2(y + 2t)y + 32y2

⇐⇒ p = 44t2 + 48ty + 45y2.

Observe that (44, 48, 45) ∼ (44,−40, 41) ∼ (41, 40, 44). We see that (ii) is
true. The proof is now complete.

Using Theorem 6.2 and (6.3) one can similarly prove the following corol-
laries.

Corollary 6.14. Let p > 5 be a prime.
(i) If p ≡ 1 (mod 6), then

p | U p−1
3

(6,−1) ⇐⇒ p = x2 + 270y2, 10x2 + 27y2,

p | U p−1
6

(6,−1) ⇐⇒ p = x2 + 1080y2, 37x2 + 34xy + 37y2.

Moreover, if p ≡ 1 (mod 6) and ( 10
p ) = 1, then ε10 = 3 +

√
10 is a cubic

residue of p if and only if p is represented by x2 + 270y2 or 10x2 + 27y2.
(ii) If p ≡ 5 (mod 6), then

p | U p+1
3

(6,−1) ⇐⇒ p = 2x2 + 135y2, 5x2 + 54y2,

p | U p+1
6

(6,−1) ⇐⇒ p = 8x2 + 8xy + 137y2, 5x2 + 216y2.

Corollary 6.15. Let p 6= 2, 3, 5, 17 be a prime.
(i) If p ≡ 1 (mod 6), then

p | U p−1
3

(9,−1) ⇐⇒ p = x2 + 255y2, 3x2 + 85y2,

p | U p−1
6

(9,−1) ⇐⇒ p = x2 + 1020y2, 12x2 + 85y2.

Moreover, if p ≡ 1 (mod 6) and (p
5 ) = ( p

17 ), then ε85 = (9 +
√

85)/2 is a
cubic residue of p if and only if p is represented by x2+255y2 or 3x2+85y2.

(ii) If p ≡ 5 (mod 6), then

p | U p+1
3

(9,−1) ⇐⇒ p = 5x2 + 51y2, 17x2 + 15y2,

p | U p+1
6

(9,−1) ⇐⇒ p = 5x2 + 204y2, 17x2 + 60y2.
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Corollary 6.16. Let p 6= 2, 3, 5, 13 be a prime.
(i) If p ≡ 1 (mod 6), then

p | U p−1
3

(10,−1) ⇐⇒ p = x2 + 702y2, 13x2 + 54y2,

p | U p−1
6

(10,−1) ⇐⇒ p = x2 + 2808y2, 13x2 + 216y2.

Moreover, if p ≡ 1 (mod 6) and ( 26
p ) = 1, then ε26 = 5 +

√
26 is a cubic

residue of p if and only if p is represented by x2 + 702y2 or 13x2 + 54y2.
(ii) If p ≡ 5 (mod 6), then

p | U p+1
3

(10,−1) ⇐⇒ p = 2x2 + 351y2, 26x2 + 27y2,

p | U p+1
6

(10,−1) ⇐⇒ p = 8x2 + 8xy + 353y2, 53x2 + 2xy + 53y2.

Theorem 6.3. Suppose m ∈ Z, m2−4 = dn2 (d, n ∈ Z) and ord3(m−2) ≥
ord3n. Let p > 3 be a prime such that p - m2 − 4. Let k be as in Theorem
5.5. Suppose p = ax2 + bxy + cy2 with a, b, c, x, y ∈ Z, b2 − 4ac = −3k2d,
p - a and (a, 6(8− 4m)/(m− 2, n)2) = 1. Then

U p−( p
3 )

3

(m, 1) ≡





0 (mod p) if
( bn

(m−2,n)+
k(m−2)
(m−2,n) (1+2ω)

a

)
3

= 1,

−(
p
3

)
2ax+by
kdny (mod p) if

( bn
(m−2,n)+

k(m−2)
(m−2,n) (1+2ω)

a

)
3

= ω,
(

p
3

)
2ax+by
kdny (mod p) if

( bn
(m−2,n)+

k(m−2)
(m−2,n) (1+2ω)

a

)
3

= ω2

and

V p−( p
3 )

3

(m, 1) ≡




2 (mod p) if
( bn

(m−2,n)+
k(m−2)
(m−2,n) (1+2ω)

a

)
3

= 1,

−1 (mod p) if
( bn

(m−2,n)+
k(m−2)
(m−2,n) (1+2ω)

a

)
3

= ω, ω2.

Proof. As m2 − 4 = dn2, from (6.1) and (6.2) we have

Ur(m, 1) =
1

n
√

d

{(m + n
√

d

2

)r

−
(m− n

√
d

2

)r}

=
1

n
√

d

{(m + n
√

d

2

)r

−
(m + n

√
d

2

)−r}

and

Vr(m, 1) =
(m + n

√
d

2

)r

+
(m− n

√
d

2

)r

=
(m + n

√
d

2

)r

+
(m + n

√
d

2

)−r

.

Thus applying Theorem 5.5 we obtain the result.
From Lemma 6.1 and Theorem 5.6 we have:
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Theorem 6.4. Suppose m ∈ Z, m2−4 = dn2 (d, n ∈ Z) and ord3(m−2) ≥
ord3n. Let p > 3 be a prime such that p - m2 − 4. Let k be as in Theorem
5.5. Then p | U(p−( p

3 ))/3(m, 1) if and only if p is represented by a class in
the subgroup L(m,n, d) of H(−3k2d), where L(m, n, d) is as in Theorem
5.6.

7. Cubic congruences modulo a prime.
Let p > 3 be a prime and a1, a2, a3 ∈ Z. Let Np(x3 + a1x

2 + a2x + a3)
denote the number of solutions of the congruence x3 + a1x

2 + a2x + a3 ≡
0 (mod p). Set

(7.1) P = −2a3
1 +9a1a2−27a3, Q = (a2

1−3a2)3 and D = −P 2 − 4Q

27
.

From [S2, Lemma 2.3] we know that D is the discriminant of x3 + a1x
2 +

a2x + a3 and

(7.2) Np(x3 + a1x
2 + a2x + a3) = Np(x3 − 3Qx− PQ) when p - Q.

It is well known that (see [D], [Sk] and [S2])

(7.3) Np(x3 + a1x
2 + a2x + a3) =





0 or 3 if (D
p ) = 1,

3 if (D
p ) = 0,

1 if (D
p ) = −1.

If p - Q and p | P , by (7.2) we see that x3 + a1x
2 + a2x+ a3 ≡ 0 (mod p) is

solvable. Thus we need only to consider the congruence x3 − 3Qx− PQ ≡
0 (mod p) under the condition p - PQ and (−3(P 2−4Q)

p ) = 1.

Theorem 7.1. Let p > 3 be a prime. Let P,Q ∈ Z, p - PQ(P 2 − 4Q),
P 2 − 4Q = df2 (d, f ∈ Z) and k = k(P/(P, f), f/(P, f), d). Then the
congruence x3−3Qx−PQ ≡ 0 (mod p) has three solutions if and only if p
is represented by some class in M(P, Q, f), where M(P, Q, f) is a subgroup
of H(−3k2d) given as in Theorem 6.2.

Proof. Clearly the discriminant of x3 − 3Qx − PQ is −27Q2(P 2 −
4Q). Thus, by (7.3) we know that Np(x3 − 3Qx − PQ) = 3 implies
(−3(P 2−4Q)

p ) = 1. From Lemma 6.1(i) we also see that p | U(p−( p
3 ))/3(P, Q)

implies (−3(P 2−4Q)
p ) = 1. Thus, by [S1, Corollary 6.3] and (7.3) we have

(7.4) Np(x3 − 3Qx− PQ) = 3 ⇐⇒ p
∣∣ U p−( p

3 )
3

(P, Q).

Now the result follows immediately from Theorem 6.2.
Putting P = 2, d = 1−Q and f = 2 in Theorem 7.1 and then applying

(7.4) one can deduce the following result.
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Corollary 7.1. Let p > 3 be a prime, Q ∈ Z and p - Q(Q− 1). Then the
following statements are equivalent:

(i) The congruence x3 − 3Qx− 2Q ≡ 0 (mod p) has three solutions.
(ii) p | U(p−( p

3 ))/3(2, Q).
(iii) p is represented by some class [a, b, c] ∈ H(3k2(Q−1)) with (a, 6Q) =

1 and
( b−k(1+2ω)

a

)
3

= 1, where k = k(1, 1, 1−Q).

Putting P = 6, d = 9−Q and f = 2 in Theorem 7.1 and then applying
(7.4) we deduce the following result.

Corollary 7.2. Let p > 3 be a prime, Q ∈ Z and p - Q(Q− 9). Then the
following statements are equivalent:

(i) The congruence x3 − 3Qx− 6Q ≡ 0 (mod p) has three solutions.
(ii) p | U(p−( p

3 ))/3(6, Q).
(iii) p is represented by some class [a, b, c] ∈ H(3k2(Q−9)) with (a, 6Q) =

1 and
( b−3k(1+2ω)

a

)
3

= 1, where k = k(3, 1, 9−Q).

From (7.4) and Corollary 6.11 we have

Corollary 7.3. Let p > 3 be a prime, m ∈ Z, p - m(m2 +4) and m2 +4 =
dn2 (d, n ∈ Z). Let k be as in Theorem 5.1. Then x3 +3x+m ≡ 0 (mod p)
has three solutions if and only if p is represented by some class [a, b, c] ∈
H(−3k2d) with (a, 6) = 1 and

( bn−km(1+2ω)
a

)
3

= 1.

From (7.4) and Corollaries 6.12-6.16 we have

Corollary 7.4. Let p > 3 be a prime. Then
(i) If p 6= 5, then Np(x3− 3x− 10) = 3 if and only if p is represented by

x2 + 162y2 or 2x2 + 81y2.
(ii) If p 6= 7, then Np(x3 − 3x − 16) = 3 if and only if p is represented

by x2 + 189y2, 7x2 + 27y2, 2x2 + 2xy + 95y2 or 14x2 + 14xy + 17y2.
(iii) If p 6= 17, then Np(x3 + 3x + 8) = 3 if and only if p is represented

by x2 + xy + 115y2 or 11x2 + 5xy + 11y2.
(iv) If p 6= 5, 41, then Np(x3 +3x+64) = 3 if and only if p is represented

by x2 + xy + 277y2 or 17x2 + 7xy + 17y2.
(v) If p 6= 13, then Np(x3 + 3x + 3) = 3 if and only if p is represented

by x2 + 351y2, 13x2 + 27y2 or 11x2 + 2xy + 32y2.
(vi) If p 6= 5, then Np(x3 + 3x + 6) = 3 if and only if p is represented by

x2 + 270y2, 10x2 + 27y2, 2x2 + 135y2 or 5x2 + 54y2.
(vii) If p 6= 5, 17, then Np(x3 +3x+9) = 3 if and only if p is represented

by x2 + 255y2, 3x2 + 85y2, 5x2 + 51y2 or 17x2 + 15y2.
(viii) If p 6= 5, 13, then Np(x3+3x+10) = 3 if and only if p is represented

by x2 + 702y2, 13x2 + 54y2, 2x2 + 351y2 or 26x2 + 27y2.

Theorem 7.2. Let p > 3 be a prime and a1, a2, a3 ∈ Z. Let P and Q be
given by (7.1). Suppose p - PQ(P 2 − 4Q) and P 2 − 4Q = df2 (d, f ∈ Z).
Then the congruence x3+a1x

2+a2x+a3 ≡ 0 (mod p) has three solutions if
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and only if p is represented by some class in M(P, Q, f), where M(P,Q, f)
is a subgroup of H(−3k2d) given as in Theorem 6.2.

Proof. This is immediate from (7.2) and Theorem 7.1.
Remark 7.1 Let us compare Theorem 7.2 with Theorem 1.4. First Spear-
man and Williams proved Theorem 1.4 using class field theory, and we
prove Theorem 7.2 using the theory of cubic residues. Second, the subgroup
M(P, Q, f) in Theorem 7.2 is constructed, but Spearman and Williams only
proved the existence of the subgroup J(a1, a2, a3). Third, in some special
cases, the discriminant of corresponding quadratic forms in Theorem 1.4
seems better than the discriminant in Theorem 7.2.
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