J. Math. Anal. Appl. 456(2017), no.2, 912-926

A kind of orthogonal polynomials and related identities

Zhi-Hong Sun

School of Mathematical Sciences
Huaiyin Normal University
Huaian, Jiangsu 223300, P.R. China
Email: zhsun@hytc.edu.cn
URL: http://www.hytc.edu.cn/xsjl/szh

Abstract In this paper we introduce the polynomials $\{d_n^{(r)}(x)\}$ and $\{D_n^{(r)}(x)\}$ given by $d_n^{(r)}(x) = \sum_{k=0}^n {x+r+k \choose k} {x-r \choose n-k}$ $(n \geq 0)$, $D_0^{(r)}(x) = 1$, $D_1^{(r)}(x) = x$ and $D_{n+1}^{(r)}(x) = xD_n^{(r)}(x) - n(n+2r)D_{n-1}^{(r)}(x)$ ($n \geq 1$). We show that $\{D_n^{(r)}(x)\}$ are orthogonal polynomials for $r > -\frac{1}{2}$, and establish many identities for $\{d_n^{(r)}(x)\}$ and $\{D_n^{(r)}(x)\}$, especially obtain a formula for $d_n^{(r)}(x)^2$ and the linearization formulas for $d_m^{(r)}(x)d_n^{(r)}(x)$ and $D_m^{(r)}(x)D_n^{(r)}(x)$. As an application we extend recent work of Sun and Guo.

Keywords: orthogonal polynomial; identity; three-term recurrence

MSC(2010): Primary 33C47, Secondary 30B10, 05A10, 05A19, 11A07, 11B83.

1. Introduction

Let \mathbb{Z} , \mathbb{N}_0 and \mathbb{N} be the sets of integers, nonnegative integers and positive integers, respectively. By [5, (3.17)], for $n \in \mathbb{N}_0$,

(1.1)
$$\sum_{k=0}^{n} \binom{n}{k} \binom{x}{k} t^k = \sum_{k=0}^{n} \binom{n}{k} \binom{x+k}{n} (t-1)^{n-k}.$$

Define

(1.2)
$$d_n(x) = \sum_{k=0}^n \binom{n}{k} \binom{x}{k} 2^k \quad (n = 0, 1, 2, \dots).$$

For $m, n \in \mathbb{N}$, $d_n(m)$ is the number of lattice paths from (0,0) to (m,n), with jumps (0,1), (1,1) or (1,0). $\{d_n(m)\}$ are called Delannoy numbers. See [2]. In [8] Z.W. Sun deduced some supercongruences involving $d_n(x)$. Actually, he obtained congruences for

(1.3)
$$\sum_{k=0}^{p-1} d_k(x)^2, \sum_{k=0}^{p-1} (-1)^k d_k(x)^2, \sum_{k=0}^{p-1} (2k+1) d_k(x)^2 \text{ and } \sum_{k=0}^{p-1} (-1)^k (2k+1) d_k(x)^2$$

modulo p^2 , where p is an odd prime and x is a rational p-adic integer. Z.W. Sun also conjectured that for any $n \in \mathbb{N}$ and $x \in \mathbb{Z}$,

(1.4)
$$x(x+1) \sum_{k=0}^{n-1} (2k+1)d_k(x)^2 \equiv 0 \pmod{2n^2},$$

(1.5)
$$\sum_{k=0}^{n-1} \varepsilon^k (2k+1) d_k(x)^{2m} \equiv 0 \pmod{n} \text{ for given } \varepsilon \in \{1, -1\} \text{ and } m \in \mathbb{N}.$$

Recently, Guo[6] proved the above two congruences by using the identity

(1.6)
$$d_n(x)^2 = \sum_{k=0}^n \binom{n+k}{2k} \binom{x}{k} \binom{x+k}{k} 4^k.$$

Guo proved (1.6) by using Maple and Zeilberger's algorithm, and Zudilin stated that (1.6) can be deduced from two transformation formulas for hypergeometric series. See [6] and [7, (1.7.1.3) and (2.5.32)].

In this paper we establish closed formulas for sums in (1.3), which imply Sun's related congruences. Set

(1.7)
$$d_n^{(r)}(x) = \sum_{k=0}^n {x+r+k \choose k} {x-r \choose n-k} \ (n=0,1,2,\ldots).$$

Then $d_n(x) = d_n^{(0)}(x)$ by (1.1). Thus, $d_n^{(r)}(x)$ is a generalization of $d_n(x)$. The main purpose of this paper is to investigate the properties of $d_n^{(r)}(x)$. We establish many identities for $d_n^{(r)}(x)$. In particular, we obtain a formula for $d_n^{(r)}(x)^2$, which is a generalization of (1.6). See Theorem 2.6.

Some classical orthogonal polynomials have formulas for the linearization of their products. As examples, for Hermite polynomials $\{H_n(x)\}$ $(H_{-1}(x)=0, H_0(x)=1, H_{n+1}(x)=2xH_n(x)-2nH_{n-1}(x) \ (n \geq 0))$ and Legendre polynomials $\{P_n(x)\}$ $(P_0(x)=1, P_1(x)=x, (n+1)P_{n+1}(x)=(2n+1)xP_n(x)-nP_{n-1}(x) \ (n \geq 1))$ we have the linearization of their products. See [1, Theorem 6.8.1 and Corollary 6.8.3] and [3, p.195]. In Section 2 we establish the following linearization formula:

$$(1.8) d_m^{(r)}(x)d_n^{(r)}(x) = \sum_{k=0}^{\min\{m,n\}} {m+n-2k \choose m-k} {2r+m+n-k \choose k} (-1)^k d_{m+n-2k}^{(r)}(x).$$

In Section 3 we introduce the polynomials $\{D_n^{(r)}(x)\}$ given by

(1.9)
$$D_0^{(r)}(x) = 1$$
, $D_1^{(r)}(x) = x$ and $D_{n+1}^{(r)}(x) = xD_n^{(r)}(x) - n(n+2r)D_{n-1}^{(r)}(x)$ $(n \ge 1)$.

By [4, pp.175-176] or [1, pp.244-245], $\{D_n^{(r)}(x)\}$ are orthogonal polynomials for $r > -\frac{1}{2}$, although we have not found their weight functions. We state that $D_n^{(r)}(x) = (-i)^n n! d_n^{(r)}(\frac{ix-1}{2})$, and obtain some properties of $\{D_n^{(r)}(x)\}$. In particular, we show that

(1.10)
$$D_n^{(r)}(x)^2 - D_{n+1}^{(r)}(x)D_{n-1}^{(r)}(x) > 0 \quad \text{for } r > -\frac{1}{2} \text{ and real } x.$$

Note that $P_n(x)^2 - P_{n-1}(x)P_{n+1}(x) \ge 0$ for $|x| \le 1$ and $H_n(x)^2 - H_{n-1}(x)H_{n+1}(x) \ge 0$. See [1, p.342] and [3, p.195].

Throughout this paper, [a] is the greatest integer not exceeding a, and f'(x) is the derivative of f(x).

2. The properties of $d_n^{(r)}(x)$

By (1.1) and (1.2), for $n \in \mathbb{N}_0$,

(2.1)
$$d_n(x) = \sum_{k=0}^n \binom{n}{k} \binom{x}{k} 2^k = \sum_{k=0}^n \binom{n}{k} \binom{x+k}{n} = \sum_{k=0}^n \binom{x+k}{k} \binom{x}{n-k}.$$

Now we introduce the following generalization of $\{d_n(x)\}$.

Definition 2.1. Let $\{d_n^{(r)}(x)\}$ be the polynomials given by

$$d_n^{(r)}(x) = \sum_{k=0}^n \binom{x+r+k}{k} \binom{x-r}{n-k} \ (n=0,1,2,\ldots).$$

For convenience we also define $d_{-1}^{(r)}(x) = 0$.

By (2.1), $d_n(x) = d_n^{(0)}(x)$. Since $\binom{-a}{k} = (-1)^k \binom{a+k-1}{k}$ we see that

$$(2.2) d_n^{(r)}(x) = \sum_{k=0}^n \binom{-1-x-r}{k} (-1)^k \binom{x-r}{n-k} = \sum_{k=0}^n \binom{-1-x-r}{n-k} (-1)^{n-k} \binom{x-r}{k}.$$

Hence

(2.3)
$$d_n^{(r)}(-1-x) = (-1)^n d_n^{(r)}(x).$$

The first few $\{d_n^{(r)}(x)\}$ are shown below:

$$d_0^{(r)}(x) = 1, \ d_1^{(r)}(x) = 2x + 1, \ d_2^{(r)}(x) = 2x^2 + 2x + r + 1,$$

$$d_3^{(r)}(x) = \frac{4}{3}x^3 + 2x^2 + \left(2r + \frac{8}{3}\right)x + r + 1.$$

Theorem 2.1. For |t| < 1 we have

(2.4)
$$\sum_{n=0}^{\infty} d_n^{(r)}(x)t^n = \frac{(1+t)^{x-r}}{(1-t)^{x+r+1}}.$$

Proof. Newton's binomial theorem states that $(1+t)^{\alpha} = \sum_{n=0}^{\infty} {n \choose n} t^n$. Thus,

$$(1+t)^{x-r}(1-t)^{-x-r-1} = \left(\sum_{m=0}^{\infty} {x-r \choose m} t^m\right) \left(\sum_{k=0}^{\infty} {-x-r-1 \choose k} (-1)^k t^k\right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{-x-r-1}{k} (-1)^k \binom{x-r}{n-k} \right) t^n = \sum_{n=0}^{\infty} d_n^{(r)}(x) t^n.$$

This proves the theorem. \Box

Corollary 2.1. For $n \in \mathbb{N}$ we have

$$d_n^{(r)}\Big(-\frac{1}{2}\Big) = \begin{cases} 0 & \text{if } 2 \nmid n, \\ {\left(-1/2 - r\right)(-1)^{n/2}} & \text{if } 2 \mid n. \end{cases}$$

Proof. By Theorem 2.1 and Newton's binomial theorem, for |t| < 1 we have

$$\sum_{n=0}^{\infty} d_n^{(r)} (-1/2) t^n = (1-t^2)^{-1/2-r} = \sum_{k=0}^{\infty} {\binom{-1/2-r}{k}} (-1)^k t^{2k}.$$

Now comparing the coefficients of t^n on both sides yields the result. Theorem 2.2. For $n \in \mathbb{N}$ we have

$$(2.5) (n+1)d_{n+1}^{(r)}(x) = (1+2x)d_n^{(r)}(x) + (n+2r)d_{n-1}^{(r)}(x).$$

Proof. By Theorem 2.1, for |t| < 1,

$$\begin{split} &\sum_{n=0}^{\infty} (n+1) d_{n+1}^{(r)}(x) t^n - \sum_{n=0}^{\infty} n d_{n-1}^{(r)}(x) t^n \\ &= \left(\sum_{n=0}^{\infty} d_{n+1}^{(r)}(x) t^{n+1}\right)' - t \left(\sum_{n=1}^{\infty} d_{n-1}^{(r)}(x) t^n\right)' \\ &= \left((1+t)^{x-r} (1-t)^{-x-r-1}\right)' - t \left(t (1+t)^{x-r} (1-t)^{-x-r-1}\right)' \\ &= \left((1+t)^{x-r} (1-t)^{-x-r-1}\right)' - t \left((1+t)^{x-r} (1-t)^{-x-r-1} + t \left((1+t)^{x-r} (1-t)^{-x-r-1}\right)'\right) \\ &= (1-t^2) \left((x-r)(1+t)^{x-r-1} (1-t)^{-x-r-1} + (1+t)^{x-r} (x+r+1)(1-t)^{-x-r-2}\right) \\ &- t (1+t)^{x-r} (1-t)^{-x-r-1} \\ &= (1+2x+2rt)(1+t)^{x-r} (1-t)^{-x-r-1} \\ &= (1+2x) \sum_{n=0}^{\infty} d_n^{(r)}(x) t^n + 2r \sum_{n=1}^{\infty} d_{n-1}^{(r)}(x) t^n. \end{split}$$

Now comparing the coefficients of t^n on both sides gives the result. Theorem 2.3. Let $n \in \mathbb{N}_0$. Then

(2.6)
$$d_n^{(r)}(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} {r-1+k \choose k} d_{n-2k}(x) = \sum_{k=0}^{n} {2r-1+k \choose k} d_{n-k}(x-r)$$

and

(2.7)
$$d_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} {r \choose k} (-1)^k d_{n-2k}^{(r)}(x) = \sum_{k=0}^n {2r \choose k} (-1)^k d_{n-k}^{(r)}(x+r).$$

Proof. By (2.4),

$$\sum_{n=0}^{\infty} d_n^{(r)}(x)t^n = (1-t^2)^{-r} \cdot \frac{1}{1-t} \left(\frac{1+t}{1-t}\right)^x = (1-t)^{-2r} \cdot \frac{1}{1-t} \left(\frac{1+t}{1-t}\right)^{x-r}.$$

Hence

$$\sum_{n=0}^{\infty} d_n^{(r)}(x)t^n = (1-t^2)^{-r} \sum_{n=0}^{\infty} d_n(x)t^n = (1-t)^{-2r} \sum_{n=0}^{\infty} d_n(x-r)t^n,$$

which yields the first 2 results by applying Newton's binomial theorem and comparing the coefficients of t^n on both sides. Also,

$$\sum_{n=0}^{\infty} d_n(x)t^n = (1-t^2)^r \sum_{n=0}^{\infty} d_n^{(r)}(x)t^n = (1-t)^{2r} \sum_{n=0}^{\infty} d_n^{(r)}(x+r)t^n$$

yields the next 2 results. \square

Corollary 2.2. Let $n \in \mathbb{N}_0$. Then $d_n^{(r)}(0) = {r+\left[\frac{n}{2}\right] \choose \left[\frac{n}{n}\right]}$.

Proof. Set $\binom{a}{k} = 0$ for k < 0. Since $d_n(0) = \sum_{k=0}^{n} \binom{n}{k} \binom{0}{k} 2^k = 1$, applying Theorem 2.3 we get

$$\begin{split} d_n^{(r)}(0) &= \sum_{k=0}^{[n/2]} \binom{r-1+k}{k} = \sum_{k=0}^{[n/2]} \binom{-r}{k} (-1)^k \\ &= \sum_{k=0}^{[n/2]} \left((-1)^k \binom{-r-1}{k} - (-1)^{k-1} \binom{-r-1}{k-1} \right) = (-1)^{\left[\frac{n}{2}\right]} \binom{-r-1}{\left[\frac{n}{2}\right]} = \binom{r+\left[\frac{n}{2}\right]}{\left[\frac{n}{2}\right]}. \quad \Box \end{split}$$

Theorem 2.4. For $n \in \mathbb{N}$ we have

(i)
$$d_n^{(r)}(x) = d_n^{(r+1)}(x) - d_{n-2}^{(r+1)}(x),$$

(ii)
$$d_n^{(r+1)}(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} d_{n-2k}^{(r)}(x),$$

(iii)
$$(n+1)^2 d_{n+1}^{(r)}(x)^2 - (n+2r+1)^2 d_n^{(r)}(x)^2 = 4(x-r)(x+1+r)(d_n^{(r+1)}(x)^2 - d_{n-1}^{(r+1)}(x)^2),$$

(iv)
$$(2r+1)\sum_{k=0}^{n-1} (2k+2r+1)d_k^{(r)}(x)^2 = n^2 d_n^{(r)}(x)^2 - 4(x-r)(x+1+r)d_{n-1}^{(r+1)}(x)^2$$
.

Proof. By Theorem 2.1, for |t| < 1,

$$\sum_{n=0}^{\infty} d_n^{(r+1)}(x)t^n = \frac{1}{1-t^2} \sum_{m=0}^{\infty} d_m^{(r)}(x)t^m = \left(\sum_{k=0}^{\infty} t^{2k}\right) \left(\sum_{m=0}^{\infty} d_m^{(r)}(x)t^m\right).$$

Now comparing the coefficients of t^n on both sides yields (i) and (ii).

By (i) and (2.5),

$$d_{n+1}^{(r)}(x) = d_{n+1}^{(r+1)}(x) - d_{n-1}^{(r+1)}(x)$$

$$= \frac{(2x+1)d_n^{(r+1)}(x) + (n+2+2r)d_{n-1}^{(r+1)}(x)}{n+1} - d_{n-1}^{(r+1)}(x) = \frac{(2x+1)d_n^{(r+1)}(x) + (2r+1)d_{n-1}^{(r+1)}(x)}{n+1}$$

and

$$d_n^{(r)}(x) = d_n^{(r+1)}(x) - d_{n-2}^{(r+1)}(x)$$

$$= d_n^{(r+1)}(x) - \frac{nd_n^{(r+1)}(x) - (2x+1)d_{n-1}^{(r+1)}(x)}{n+1+2r} = \frac{(2r+1)d_n^{(r+1)}(x) + (2x+1)d_{n-1}^{(r+1)}(x)}{n+1+2r}.$$

Thus,

$$(n+1)^2 d_{n+1}^{(r)}(x)^2 - (n+1+2r)^2 d_n^{(r)}(x)^2$$

$$= ((2x+1)d_n^{(r+1)}(x) + (2r+1)d_{n-1}^{(r+1)}(x))^2 - ((2r+1)d_n^{(r+1)}(x) + (2x+1)d_{n-1}^{(r+1)}(x))^2$$

$$= 4(x-r)(x+1+r)(d_n^{(r+1)}(x)^2 - d_{n-1}^{(r+1)}(x)^2).$$

This proves (iii). By (iii),

$$\sum_{k=0}^{n-1} (2r+1)(2k+2r+1)d_k^{(r)}(x)^2$$

$$= \sum_{k=0}^{n-1} \left((k+1)^2 d_{k+1}^{(r)}(x)^2 - k^2 d_k^{(r)}(x)^2 \right) - 4(x-r)(x+1+r) \sum_{k=0}^{n-1} \left(d_k^{(r+1)}(x)^2 - d_{k-1}^{(r+1)}(x)^2 \right)$$

$$= n^2 d_n^{(r)}(x)^2 - 4(x-r)(x+1+r) d_{n-1}^{(r+1)}(x)^2.$$

This proves (iv). \Box

Theorem 2.5. Let $n \in \mathbb{N}$, $r \in \mathbb{N}_0$ and $x \in \mathbb{Z}$. Then

$$(2r+1)\prod_{k=-r}^{r}(x+k)(x+1-k)\sum_{k=0}^{n-1}(2k+2r+1)d_k^{(r)}(x)^2 \equiv 0 \pmod{2n^2(n+1)^2\cdots(n+2r)^2}.$$

Proof. It is easily seen that for $k, n, r \in \mathbb{N}_0$ with $k \leq n$,

$$\binom{x+r}{2r} \binom{x+r+k}{k} \binom{x-r}{n-k} = \binom{n+2r}{2r} \binom{n}{k} \binom{x+r+k}{n+2r}.$$

Thus,

(2.8)
$${x+r \choose 2r} d_n^{(r)}(x) = {n+2r \choose 2r} \sum_{k=0}^n {n \choose k} {x+r+k \choose n+2r} \quad \text{for} \quad r \in \mathbb{N}_0.$$

By Theorem 2.4(iv) and (2.8),

$$(2r+1)\prod_{k=-r}^{r}(x+k)(x+1-k)\sum_{k=0}^{n-1}(2k+2r+1)d_k^{(r)}(x)^2$$

$$= \prod_{k=-r}^{r} (x+k)(x+1-k) \times \left(n^2 d_n^{(r)}(x)^2 - 4(x-r)(x+1+r) d_{n-1}^{(r+1)}(x)^2\right)$$

$$= (x-r)(x+r+1)(n+2r)^2 (n+2r-1)^2 \cdots (n+1)^2 n^2 \left(\sum_{k=0}^{n} \binom{n}{k} \binom{x+r+k}{n+2r}\right)^2$$

$$-4(n+2r+1)^2 (n+2r)^2 \cdots n^2 \left(\sum_{k=0}^{n-1} \binom{n-1}{k} \binom{x+r+1+k}{n+2r+1}\right)^2.$$

To finish the proof, we note that $(x+r+1)(x-r) \equiv 0 \pmod{2}$.

We remark that Theorem 2.5 is a generalization of (1.4), and the next theorem is a generalization of (1.6).

Theorem 2.6. Suppose $n \in \mathbb{N}_0$ and $r \notin \{-\frac{1}{2}, -\frac{2}{2}, -\frac{3}{2}, \ldots\}$. Then

(2.9)
$$d_n^{(r)}(x)^2 = \binom{n+2r}{n} \sum_{m=0}^n \frac{\binom{x-r}{m} \binom{x+r+m}{m} \binom{n+2r+m}{n-m}}{\binom{m+2r}{m}} 4^m.$$

Proof. Set

$$s(n) = \frac{d_n^{(r)}(x)^2}{\binom{n+2r}{n}}$$
 and $S(n) = \sum_{m=0}^n \frac{\binom{x-r}{m}\binom{x+r+m}{m}\binom{n+2r+m}{n-m}}{\binom{m+2r}{m}} 4^m$.

Using sumrecursion in Maple we find that for $n \in \mathbb{N}$,

$$(n+2)(n+2+2r)S(n+2) - ((2x+1)^2 + (n+1)(n+1+2r))(S(n+1) + S(n)) + n(n+2r)S(n-1) = 0.$$

By Theorem 2.2,

$$d_{n+2}^{(r)}(x) = \frac{(1+2x)d_{n+1}^{(r)}(x) + (n+1+2r)d_n^{(r)}(x)}{n+2}, \ d_{n-1}^{(r)}(x) = \frac{(n+1)d_{n+1}^{(r)}(x) - (1+2x)d_n^{(r)}(x)}{n+2r}.$$

Thus,

$$(n+2)(n+2+2r)s(n+2) + n(n+2r)s(n-1)$$

$$= \frac{(n+2)(n+2+2r)}{\binom{n+2+2r}{2r}} d_{n+2}^{(r)}(x)^2 + \frac{n(n+2r)}{\binom{n-1+2r}{2r}} d_{n-1}^{(r)}(x)^2$$

$$= \frac{((1+2x)d_{n+1}^{(r)}(x) + (n+1+2r)d_n^{(r)}(x))^2}{\binom{n+1+2r}{2r}} + \frac{((n+1)d_{n+1}^{(r)}(x) - (1+2x)d_n^{(r)}(x))^2}{\binom{n+2r}{2r}}$$

$$= d_{n+1}^{(r)}(x)^2 \left\{ \frac{(1+2x)^2}{\binom{n+1+2r}{2r}} + \frac{(n+1)^2}{\binom{n+2r}{2r}} \right\} + d_n^{(r)}(x)^2 \left\{ \frac{(1+2x)^2}{\binom{n+2r}{2r}} + \frac{(n+1+2r)^2}{\binom{n+1+2r}{2r}} \right\}$$

$$= \frac{d_{n+1}^{(r)}(x)^2}{\binom{n+1+2r}{2r}} \left((1+2x)^2 + (n+1)(n+1+2r) \right) + \frac{d_n^{(r)}(x)^2}{\binom{n+2r}{2r}} \left((1+2x)^2 + (n+1)(n+1+2r) \right).$$

$$= ((1+2x)^2 + (n+1)(n+1+2r))(s(n) + s(n+1)).$$

This shows that s(n) and S(n) satisfy the same recurrence relation. Also,

$$s(0) = 1 = S(0), \ s(1) = \frac{(1+2x)^2}{2r+1} = S(1), \ s(2) = \frac{(2x^2+2x+r+1)^2}{(r+1)(2r+1)} = S(2).$$

Thus, s(n) = S(n) for $n \in \mathbb{N}_0$.

Now we present the linearization of $d_m^{(r)}(x)d_n^{(r)}(x)$.

Theorem 2.7. Let $m, n \in \mathbb{N}_0$. Then

$$(2.10) d_m^{(r)}(x)d_n^{(r)}(x) = \sum_{k=0}^{\min\{m,n\}} {m+n-2k \choose m-k} {2r+m+n-k \choose k} (-1)^k d_{m+n-2k}^{(r)}(x).$$

Proof. Let $L(m,n) = d_m^{(r)}(x)d_n^{(r)}(x)$ and $\binom{a}{k} = 0$ for k < 0. By Theorem 2.2, $(m+1+2r)d_m^{(r)}(x) + (1+2x)d_{m+1}^{(r)}(x) = (m+2)d_{m+2}^{(r)}(x)$. Hence

$$(m+1+2r)L(m,n) + (1+2x)L(m+1,n) - (m+2)L(m+2,n) = 0.$$

Let

$$G(m, n, k, l) = (-1)^k \binom{m + n - 2k}{m - k} \binom{2r + m + n - k}{k} \binom{x + r + l}{l} \binom{x - r}{m + n - 2k - l}.$$

Using Maple it is easy to check that

$$(m+1+2r)G(m,n,k,l) + (2x+1)G(m+1,n,k,l) - (m+2)G(m+2,n,k,l)$$

$$= F_1(m, n, k+1, l) - F_1(m, n, k, l) + F_2(m, n, k, l+1) - F_2(m, n, k, l),$$

where

$$F_1(m, n, k, l) = (-1)^k (2m + n + 2r + 4 - 2k) \times {m + n + 2 - 2k \choose m + 2 - k} {2r + m + 1 + n - k \choose k - 1} {x + r + l \choose l} {x - r \choose m + 2 + n - 2k - l}$$

and

$$F_2(m, n, k, l) = (-1)^k l \binom{m+1+n-2k}{m+1-k} \binom{2r+m+n+1-k}{k} \binom{x+r+l}{l} \binom{x+1-r}{m+2+n-2k-l}.$$

Thus,

$$\sum_{k=0}^{m+2} \sum_{l=0}^{m+2+n} \left((m+1+2r)G(m,n,k,l) + (2x+1)G(m+1,n,k,l) - (m+2)G(m+2,n,k,l) \right)$$

$$= \sum_{l=0}^{m+2+n} \sum_{k=0}^{m+2} \left(F_1(m,n,k+1,l) - F_1(m,n,k,l) \right) + \sum_{k=0}^{m+2} \sum_{l=0}^{m+2+n} \left(F_2(m,n,k,l+1) - F_2(m,n,k,l) \right)$$

$$= \sum_{l=0}^{m+2+n} \left(F_1(m,n,m+3,l) - F_1(m,n,0,l) \right) + \sum_{k=0}^{m+2} \left(F_2(m,n,k,m+n+3) - F_2(m,n,k,0) \right)$$

$$= 0.$$

Set

$$R(m,n) = \sum_{k=0}^{m} \sum_{l=0}^{m+n} G(m,n,k,l) = \sum_{k=0}^{m} \sum_{l=0}^{m+n-2k} G(m,n,k,l).$$

Then (m+1+2r)R(m,n)+(2x+1)R(m+1,n)-(m+2)R(m+2,n)=0. From the above we see that L(m,n) and R(m,n) satisfy the same recurrence relation. It is clear that $L(0,n)=d_n^{(r)}(x)=\sum_{l=0}^n {x+r+l \choose l} {x-r \choose n-l}=R(0,n)$. By Theorem 2.2, $R(1,n)=(n+1)d_{n+1}^{(r)}(x)-(n+2r)d_{n-1}^{(r)}(x)=(1+2x)d_n^{(r)}(x)=L(1,n)$. Hence, L(m,n)=R(m,n) for any nonnegative integers m and n. This proves the theorem. \square

Theorem 2.8. For $n \in \mathbb{N}$ we have

(2.11)
$$2(1+x+y)\sum_{k=0}^{n-1} \frac{(2r+k+1)\cdots(2r+n)}{(k+1)\cdots n} d_k^{(r)}(x)d_k^{(r)}(y) = (n+2r)(d_n^{(r)}(x)d_{n-1}^{(r)}(y) + d_{n-1}^{(r)}(x)d_n^{(r)}(y)).$$

Proof. We prove (2.11) by induction on n. Clearly (2.11) is true for n = 1. By Theorem 2.2,

$$(n+1)\left(d_{n+1}^{(r)}(x)d_{n}^{(r)}(y) + d_{n}^{(r)}(x)d_{n+1}^{(r)}(y)\right)$$

$$= d_{n}^{(r)}(y)\left((1+2x)d_{n}^{(r)}(x) + (n+2r)d_{n-1}^{(r)}(x)\right) + d_{n}^{(r)}(x)\left((1+2y)d_{n}^{(r)}(y) + (n+2r)d_{n-1}^{(r)}(y)\right)$$

$$= 2(1+x+y)d_{n}^{(r)}(x)d_{n}^{(r)}(y) + (n+2r)\left(d_{n}^{(r)}(x)d_{n-1}^{(r)}(y) + d_{n-1}^{(r)}(x)d_{n}^{(r)}(y)\right).$$

Thus, if the result holds for n, then

$$2(1+x+y)\sum_{k=0}^{n} \frac{(2r+k+1)\cdots(2r+n+1)}{(k+1)\cdots(n+1)} d_{k}^{(r)}(x) d_{k}^{(r)}(y)$$

$$= \frac{n+2r+1}{n+1} 2(1+x+y) \left(d_{n}^{(r)}(x) d_{n}^{(r)}(y) + \sum_{k=0}^{n-1} \frac{(2r+k+1)\cdots(2r+n)}{(k+1)\cdots n} d_{k}^{(r)}(x) d_{k}^{(r)}(y) \right)$$

$$= \frac{n+2r+1}{n+1} \left(2(1+x+y) d_{n}^{(r)}(x) d_{n}^{(r)}(y) + (n+2r) (d_{n}^{(r)}(x) d_{n-1}^{(r)}(y) + d_{n-1}^{(r)}(x) d_{n}^{(r)}(y)) \right)$$

$$= (n+1+2r) \left(d_{n+1}^{(r)}(x) d_{n}^{(r)}(y) + d_{n}^{(r)}(x) d_{n+1}^{(r)}(y) \right).$$

Hence (2.11) holds for n+1. \square

Remark 2.1. Taking r=0 in Theorem 2.8 and noting that $d_n(x)=d_n^{(0)}(x)$ yields

(2.12)
$$2(1+x+y)\sum_{k=0}^{n-1}d_k(x)d_k(y) = n(d_n(x)d_{n-1}(y) + d_{n-1}(x)d_n(y)).$$

3. The orthogonal polynomials $\{D_n^{(r)}(x)\}$

By [4, pp.175-176], every orthogonal system of real valued polynomials $\{p_n(x)\}$ satisfies

$$(3.1) p_{-1}(x) = 0, p_0(x) = 1 and xp_n(x) = A_n p_{n+1}(x) + B_n p_n(x) + C_n p_{n-1}(x) (n \ge 0),$$

where A_n, B_n, C_n are real and $A_n C_{n+1} > 0$. Conversely, if (3.1) holds for a sequence of polynomials $\{p_n(x)\}$ and A_n, B_n, C_n are real with $A_n C_{n+1} > 0$, then there exists a weight function w(x) such that

$$\int_{-\infty}^{\infty} w(x)p_m(x)p_n(x)dx = \begin{cases} 0 & \text{if } m \neq n, \\ \frac{1}{v_n} \int_{-\infty}^{\infty} w(x)dx & \text{if } m = n, \end{cases}$$

where $v_0 = 1$ and $v_n = \frac{A_0 A_1 \cdots A_{n-1}}{C_1 \cdots C_n}$ $(n \ge 1)$.

In this section we discuss a kind of orthogonal polynomials related to $\{d_n^{(r)}(x)\}$.

Definition 3.1. Let $\{D_n^{(r)}(x)\}$ be the polynomials given by

$$(3.2) D_{-1}^{(r)}(x) = 0, D_{0}^{(r)}(x) = 1 and D_{n+1}^{(r)}(x) = xD_{n}^{(r)}(x) - n(n+2r)D_{n-1}^{(r)}(x) (n \ge 0).$$

The first few $D_n^{(r)}(x)$ are shown below:

$$D_0^{(r)}(x) = 1$$
, $D_1^{(r)}(x) = x$, $D_2^{(r)}(x) = x^2 - 2r - 1$, $D_3^{(r)}(x) = x^3 - (6r + 5)x$.

Suppose $r > -\frac{1}{2}$. Set $A_n = 1$, $B_n = 0$, $C_n = n(n+2r)$, $v_0 = 1$ and $v_n = \frac{1}{n!(2r+1)(2r+2)\cdots(2r+n)}$ $(n \ge 1)$. Then $A_n C_{n+1} > 0$ and (3.1) holds for $p_n(x) = D_n^{(r)}(x)$. Hence $\{D_n^{(r)}(x)\}$ are orthogonal polynomials.

Lemma 3.1. For $n \in \mathbb{N}_0$ we have

(3.3)
$$d_n^{(r)}(x) = \frac{i^n D_n^{(r)}(-i(1+2x))}{n!} \quad and \text{ so } \quad D_n^{(r)}(x) = (-i)^n n! d_n^{(r)} \left(\frac{ix-1}{2}\right).$$

Proof. Since $D_0^{(r)}(-i(1+2x)) = 1$, $iD_1^{(r)}(-i(1+2x)) = 1+2x$ and

$$(n+1)\frac{i^{n+1}D_{n+1}^{(r)}(-i(1+2x))}{(n+1)!}$$

$$=\frac{i^{n+1}D_{n+1}^{(r)}(-i(1+2x))}{n!} = \frac{i^{n+1}}{n!}\left(-i(1+2x)D_n^{(r)}(-i(1+2x)) - n(n+2r)D_{n-1}^{(r)}(-i(1+2x))\right)$$

$$=(1+2x)\frac{i^nD_n^{(r)}(-i(1+2x))}{n!} + (n+2r)\frac{i^{n-1}D_{n-1}^{(r)}(-i(1+2x))}{(n-1)!},$$

we must have $d_n^{(r)}(x) = \frac{i^n D_n^{(r)}(-i(1+2x))}{n!}$ by (2.5). Substituting x with $\frac{ix-1}{2}$ yields the remaining part. \square

Theorem 3.1. For $n \in \mathbb{N}$ we have

(3.4)
$$\sum_{k=0}^{n-1} (2k+2r+1) \prod_{s=k+1}^{n} s(s+2r) D_k^{(r)}(x)^2 = n(n+2r) \left(D_n^{(r)}(x)^2 - D_{n-1}^{(r)}(x) D_{n+1}^{(r)}(x) \right).$$

Thus, $D_n^{(r)}(x)^2 - D_{n+1}^{(r)}(x)D_{n-1}^{(r)}(x) > 0$ for $r > -\frac{1}{2}$ and real x.

Proof. Set $\Delta_n^{(r)}(x) = D_n^{(r)}(x)^2 - D_{n+1}^{(r)}(x)D_{n-1}^{(r)}(x)$. We prove (3.4) by induction on n. Clearly (3.4) is true for n = 1. Suppose that (3.4) holds for n. Since

$$\begin{split} \Delta_{n+1}^{(r)}(x) - n(n+2r)\Delta_{n}^{(r)}(x) &= D_{n+1}^{(r)}(x)^{2} - D_{n}^{(r)}(x)(xD_{n+1}^{(r)}(x) - (n+1)(n+2r+1)D_{n}^{(r)}(x)) \\ &- n(n+2r)(D_{n}^{(r)}(x)^{2} - D_{n-1}^{(r)}(x)D_{n+1}^{(r)}(x)) \\ &= D_{n+1}^{(r)}(x)(D_{n+1}^{(r)}(x) - xD_{n}^{(r)}(x) + n(n+2r)D_{n-1}^{(r)}(x)) \\ &+ ((n+1)(n+1+2r) - n(n+2r))D_{n}^{(r)}(x)^{2} \\ &= (2n+2r+1)D_{n}^{(r)}(x)^{2}, \end{split}$$

we see that

$$\sum_{k=0}^{n} (2k+2r+1) \prod_{s=k+1}^{n+1} s(s+2r) \times D_k^{(r)}(x)^2$$

$$= (n+1)(n+1+2r) \Big((2n+2r+1)D_n^{(r)}(x)^2 + \sum_{k=0}^{n-1} (2k+2r+1) \prod_{s=k+1}^{n} s(s+2r)D_k^{(r)}(x)^2 \Big)$$

$$= (n+1)(n+1+2r) \Big((2n+2r+1)D_n^{(r)}(x)^2 + n(n+2r)\Delta_n^{(r)}(x) \Big)$$

$$= (n+1)(n+1+2r)\Delta_{n+1}^{(r)}(x).$$

This shows that (3.4) holds for n+1. Hence (3.4) is proved by induction. For $r>-\frac{1}{2}$ we have 1+2r>0. From (3.4) and the fact $D_0^{(r)}(x)=1$ we deduce that $\Delta_n^{(r)}(x)\geq (2r+1)$ 1) $\frac{n!(2r+1)\cdots(2r+n)}{n(n+2r)} > 0$. This concludes the proof. Corollary 3.1. Let $n \in \mathbb{N}$. Then

(3.5)
$$\sum_{k=0}^{n-1} (-1)^k (2k+2r+1) \frac{(k+1+2r)\cdots(n+2r)}{(k+1)\cdots n} d_k^{(r)}(x)^2 = (-1)^n (n+2r) \left(n d_n^{(r)}(x)^2 - (n+1) d_{n-1}^{(r)}(x) d_{n+1}^{(r)}(x) \right).$$

Proof. Replacing x with -i(1+2x) in Theorem 3.1 and then applying Lemma 3.1 yields the result.

Theorem 3.2. Let $n \in \mathbb{N}$. Then

$$(3.6) \qquad \sum_{k=0}^{n-1} \prod_{s=k+1}^{n} s(s+2r) D_k^{(r)}(x)^2 = n(n+2r) \left(D_{n-1}^{(r)}(x) \frac{d}{dx} D_n^{(r)}(x) - D_n^{(r)}(x) \frac{d}{dx} D_{n-1}^{(r)}(x) \right)$$

and

(3.7)
$$\sum_{k=0}^{n-1} (-1)^k \prod_{s=k+1}^n \frac{s+2r}{s} d_k^{(r)}(x)^2 = (-1)^{n-1} \frac{n+2r}{2} \left(d_{n-1}^{(r)}(x) \frac{d}{dx} d_n^{(r)}(x) - d_n^{(r)}(x) \frac{d}{dx} d_{n-1}^{(r)}(x) \right).$$

Proof. We prove (3.6) by induction on n. Clearly (3.6) is true for n = 1. Suppose that (3.6) holds for n. Since $D_{n+1}^{(r)}(x) = xD_n^{(r)}(x) - n(n+2r)D_{n-1}^{(r)}(x)$ we see that

$$\frac{d}{dx}D_{n+1}^{(r)}(x) = D_n^{(r)}(x) + x\frac{d}{dx}D_n^{(r)}(x) - n(n+2r)\frac{d}{dx}D_{n-1}^{(r)}(x)$$

and so

$$\begin{split} D_{n}^{(r)}(x) \frac{d}{dx} D_{n+1}^{(r)}(x) - D_{n+1}^{(r)}(x) \frac{d}{dx} D_{n}^{(r)}(x) - n(n+2r) \Big(D_{n-1}^{(r)}(x) \frac{d}{dx} D_{n}^{(r)}(x) - D_{n}^{(r)}(x) \frac{d}{dx} D_{n-1}^{(r)}(x) \Big) \\ &= D_{n}^{(r)}(x)^{2} + x D_{n}^{(r)}(x) \frac{d}{dx} D_{n}^{(r)}(x) - n(n+2r) D_{n}^{(r)}(x) \frac{d}{dx} D_{n-1}^{(r)}(x) \\ &- (x D_{n}^{(r)}(x) - n(n+2r) D_{n-1}^{(r)}(x)) \frac{d}{dx} D_{n}^{(r)}(x) \\ &- n(n+2r) D_{n-1}^{(r)}(x) \frac{d}{dx} D_{n}^{(r)}(x) + n(n+2r) D_{n}^{(r)}(x) \frac{d}{dx} D_{n-1}^{(r)}(x) \\ &= D_{n}^{(r)}(x)^{2}. \end{split}$$

Hence

$$\sum_{k=0}^{n} \prod_{s=k+1}^{n+1} s(s+2r) \times D_k^{(r)}(x)^2$$

$$= (n+1)(n+1+2r) \left(D_n^{(r)}(x)^2 + \sum_{k=0}^{n-1} \prod_{s=k+1}^{n} s(s+2r) \cdot D_k^{(r)}(x)^2 \right)$$

$$= (n+1)(n+1+2r) \left(D_n^{(r)}(x)^2 + n(n+2r) \left(D_{n-1}^{(r)}(x) \frac{d}{dx} D_n^{(r)}(x) - D_n^{(r)}(x) \frac{d}{dx} D_{n-1}^{(r)}(x) \right) \right)$$

$$= (n+1)(n+1+2r) \left(D_n^{(r)}(x) \frac{d}{dx} D_{n+1}^{(r)}(x) - D_{n+1}^{(r)}(x) \frac{d}{dx} D_n^{(r)}(x) \right).$$

This shows that (3.6) holds for n + 1. Hence (3.6) is proved.

By Lemma 3.1, $d_n^{(r)}(x) = i^n D_n^{(r)}(-i(1+2x))/n!$. Thus, $\frac{d}{dx} d_n^{(r)}(x) = i^n \frac{d}{dx} D_n^{(r)}(-i(1+2x))(-2i)/n!$. Now applying (3.6) we obtain

$$\begin{split} &\sum_{k=0}^{n-1} (-1)^k \prod_{s=k+1}^n \frac{s+2r}{s} \times d_k^{(r)}(x)^2 \\ &= \sum_{k=0}^{n-1} \prod_{s=k+1}^n \frac{s+2r}{s} \times \frac{D_k^{(r)}(-i(1+2x))^2}{k!^2} = \frac{1}{n!^2} \sum_{k=0}^{n-1} \prod_{s=k+1}^n s(s+2r) \times D_k^{(r)}(-i(1+2x))^2 \end{split}$$

$$= \frac{n(n+2r)}{n!^2} \left(D_{n-1}^{(r)}(-i(1+2x)) \frac{d}{dx} D_n^{(r)}(-i(1+2x)) - D_n^{(r)}(-i(1+2x)) \frac{d}{dx} D_{n-1}^{(r)}(-i(1+2x)) \right)$$

$$= \frac{n(n+2r)}{n!^2} \left(\frac{n! \frac{d}{dx} d_n^{(r)}(x)}{(-2i)i^n} \times \frac{(n-1)! d_{n-1}^{(r)}(x)}{i^{n-1}} - \frac{n! d_n^{(r)}(x)}{i^n} \times \frac{(n-1)! \frac{d}{dx} d_{n-1}^{(r)}(x)}{(-2i)i^{n-1}} \right)$$

$$= (-1)^{n-1} \frac{n+2r}{2} \left(d_{n-1}^{(r)}(x) \frac{d}{dx} d_n^{(r)}(x) - d_n^{(r)}(x) \frac{d}{dx} d_{n-1}^{(r)}(x) \right).$$

This proves (3.7).

Remark 3.1. Taking r = 0 in (3.7) and (3.5) yields

(3.8)
$$\sum_{k=0}^{n-1} (-1)^k d_k(x)^2 = (-1)^{n-1} \frac{n}{2} (d_{n-1}(x) d'_n(x) - d_n(x) d'_{n-1}(x)),$$

(3.9)
$$\sum_{k=0}^{n-1} (-1)^k (2k+1) d_k(x)^2 = (-1)^n (n^2 d_n(x)^2 - n(n+1) d_{n-1}(x) d_{n+1}(x)).$$

Theorem 3.3. For $n \in \mathbb{N}_0$ we have

$$(3.10) D_n^{(r)}(x)^2 = \sum_{m=0}^n \binom{n+2r+m}{n-m} (-1)^{n-m} \prod_{j=m+1}^n j(2r+j) \prod_{k=1}^m (x^2 + (2r+2k-1)^2).$$

Proof. By Lemma 3.1 and Theorem 2.6,

$$D_n^{(r)}(x)^2 = (-1)^n n!^2 d_n^{(r)} \left(\frac{ix-1}{2}\right)^2 = (-1)^n n!^2 \binom{n+2r}{n} \sum_{m=0}^n \frac{\binom{ix-1}{2}-r}{\binom{m}{2}} \binom{\frac{ix-1}{2}+r+m}{m} \binom{n+2r+m}{n-m} 4^m.$$

Since

$$\begin{pmatrix} \frac{ix-1}{2} - r \\ m \end{pmatrix} \begin{pmatrix} \frac{ix-1}{2} + r + m \\ m \end{pmatrix}$$

$$= \frac{(\frac{ix-1}{2} - r)(\frac{ix-1}{2} - (r+1)) \cdots (\frac{ix-1}{2} - (r+m-1))(\frac{ix-1}{2} + r + m) \cdots (\frac{ix-1}{2} + r + 1)}{m!^2}$$

$$= \frac{((ix)^2 - (2r+1)^2) \cdots ((ix)^2 - (2r+2m-1)^2)}{2^{2m} \cdot m!^2} = \frac{(x^2 + (2r+1)^2) \cdots (x^2 + (2r+2m-1)^2)}{(-4)^m \cdot m!^2},$$

from the above we deduce that

$$D_n^{(r)}(x)^2 = (-1)^n n! \sum_{m=0}^n \binom{n+2r+m}{n-m} \frac{(-1)^m (2r+1)(2r+2)\cdots (2r+n)}{m!(2r+1)(2r+2)\cdots (2r+m)} \prod_{k=1}^m (x^2 + (2r+2k-1)^2).$$

This yields the result. \Box

Theorem 3.4. The exponential generating function of $\{D_n^{(r)}(x)\}$ is given by

(3.11)
$$\sum_{n=0}^{\infty} D_n^{(r)}(x) \frac{t^n}{n!} = (1+t^2)^{-r-\frac{1}{2}} e^{x \arctan t}.$$

Proof. Set $f(t) = \sum_{n=0}^{\infty} D_n^{(r)}(x) \frac{t^n}{n!}$. Then

$$f(t) = 1 + \sum_{n=0}^{\infty} D_{n+1}^{(r)}(x) \frac{t^{n+1}}{(n+1)!} = 1 + \sum_{n=0}^{\infty} x D_n^{(r)}(x) \frac{t^{n+1}}{(n+1)!} - \sum_{n=1}^{\infty} n(n+2r) D_{n-1}^{(r)}(x) \frac{t^{n+1}}{(n+1)!}.$$

Hence

$$f'(t) = \sum_{n=0}^{\infty} x D_n^{(r)}(x) \frac{t^n}{n!} - \sum_{n=1}^{\infty} (n+2r) D_{n-1}^{(r)}(x) \frac{t^n}{(n-1)!}$$

$$= x f(t) - 2rt f(t) - t \left(\sum_{n=1}^{\infty} D_{n-1}^{(r)}(x) \frac{t^n}{(n-1)!} \right)'$$

$$= (x - 2rt) f(t) - t (t f(t))' = (x - 2rt) f(t) - t (f(t) + t f'(t)).$$

That is, $\frac{f'(t)}{f(t)} = \frac{x - (2r+1)t}{1+t^2}$. Solving this differential equation yields (3.11). Corollary 3.2. For $n \in \mathbb{N}_0$,

(3.12)
$$D_n^{(r)}(-x) = (-1)^n D_n^{(r)}(x) \quad and \quad D_n^{(r)}(0) = \begin{cases} 0 & \text{if } n \text{ is odd,} \\ n! \binom{-r-1/2}{n/2} & \text{if } n \text{ is even.} \end{cases}$$

Proof. By Theorem 3.4,

$$\sum_{n=0}^{\infty} D_n^{(r)}(-x) \frac{(-t)^n}{n!} = (1+t^2)^{-r-\frac{1}{2}} e^{-x \arctan(-t)} = (1+t^2)^{-r-\frac{1}{2}} e^{x \arctan t} = \sum_{n=0}^{\infty} D_n^{(r)}(x) \frac{t^n}{n!}.$$

Thus, $(-1)^n D_n^{(r)}(-x) = D_n^{(r)}(x)$. Taking x = 0 in Theorem 3.4 and then applying Newton's binomial theorem we see that $\sum_{n=0}^{\infty} D_n^{(r)}(0) \frac{t^n}{n!} = (1+t^2)^{-r-\frac{1}{2}} = \sum_{k=0}^{\infty} {r-\frac{1}{2} \choose k} t^{2k}$. Comparing the coefficients of t^n on both sides yields the remaining part. \square

Theorem 3.5. For $n \in \mathbb{N}_0$ we have

(3.13)
$$D_n^{(r)}(x) = x^n - \sum_{k=1}^{n-1} k(k+2r) D_{k-1}^{(r)}(x) x^{n-1-k},$$

(3.14)
$$n!d_n^{(r)}(x) = (1+2x)^n + \sum_{k=1}^{n-1} (k+2r) \cdot k!d_{k-1}^{(r)}(x)(1+2x)^{n-1-k}.$$

Proof. For $x \neq 0$ and k = 0, 1, 2, ... we have $\frac{D_{k+1}^{(r)}(x)}{x^{k+1}} - \frac{D_k^{(r)}(x)}{x^k} = -k(k+2r)\frac{D_{k-1}^{(r)}(x)}{x^{k+1}}$. Thus,

$$-\sum_{k=1}^{n-1} k(k+2r) \frac{D_{k-1}^{(r)}(x)}{x^{k+1}} = \sum_{k=1}^{n-1} \left(\frac{D_{k+1}^{(r)}(x)}{x^{k+1}} - \frac{D_{k}^{(r)}(x)}{x^{k}} \right) = \frac{D_{n}^{(r)}(x)}{x^{n}} - \frac{D_{1}^{(r)}(x)}{x}.$$

Multiplying by x^n on both sides and noting that $D_1^{(r)}(x) = x$ we deduce (3.13) for $x \neq 0$. When x = 0, (3.13) is also true by (3.2).

By Lemma 3.1,
$$(-i)^n n! d_n^{(r)}(x) = D_n^{(r)}(-i(1+2x))$$
. Thus,

$$(-i)^n n! d_n^{(r)}(x)$$

$$= D_n^{(r)}(-i(1+2x)) = (-i(1+2x))^n - \sum_{k=1}^{n-1} k(k+2r) D_{k-1}^{(r)}(-i(1+2x)) (-i(1+2x))^{n-1-k}$$

$$= (-i(1+2x))^n - \sum_{k=1}^{n-1} k(k+2r)(-i)^{k-1}(k-1)! d_{k-1}^{(r)}(x) (-i(1+2x))^{n-1-k}$$

$$= (-i)^n \Big\{ (1+2x)^n + \sum_{k=1}^{n-1} (k+2r) \cdot k! d_{k-1}^{(r)}(x) (1+2x)^{n-1-k} \Big\}.$$

This proves (3.14).

Corollary 3.3. Let $n \in \mathbb{N}$. Then

$$[x^n] d_n^{(r)}(x) = \frac{2^n}{n!}, \ [x^{n-1}] d_n^{(r)}(x) = \frac{2^{n-1}}{(n-1)!}, \quad [x^{n-2}] d_n^{(r)}(x) = \frac{2^{n-2}}{(n-2)!} \left(r + \frac{n+1}{3}\right) \ (n \ge 2),$$

$$[x^n] D_n^{(r)}(x) = 1 \quad and \quad [x^{n-2}] D_n^{(r)}(x) = -\frac{(n-1)n(2n-1+6r)}{6} \ (n \ge 2),$$

where $[x^k]f(x)$ is the coefficient of x^k in the power series expansion of f(x).

Proof. From Theorem 3.5 we see that $[x^n]D_n^{(r)}(x) = 1$ and so

$$[x^{n-2}]D_n^{(r)}(x) = -\sum_{k=1}^{n-1} k(k+2r) = -\sum_{k=1}^{n-1} k^2 - 2r\sum_{k=1}^{n-1} k = -\frac{(n-1)n(2n-1)}{6} - rn(n-1).$$

By Theorem 3.5,
$$[x^n]d_n^{(r)}(x) = [x^n]\frac{(1+2x)^n}{n!} = \frac{2^n}{n!}$$
, $[x^{n-1}]d_n^{(r)}(x) = [x^{n-1}]\frac{(1+2x)^n}{n!} = \frac{2^{n-1}}{(n-1)!}$ and

$$[x^{n-2}]n!d_n^{(r)}(x) = \binom{n}{2}2^{n-2} + \sum_{k=1}^{n-1}(k+2r)k \cdot 2^{k-1} \cdot 2^{n-1-k} = 2^{n-2}n(n-1)\left(r + \frac{n+1}{3}\right) \ (n \ge 2).$$

This yields the result. \square

Theorem 3.6. For any nonnegative integer n we have

(3.15)
$$D_n^{(r)}(x) = D_n^{(r+1)}(x) + n(n-1)D_{n-2}^{(r+1)}(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} \binom{-r}{k} (2k)! D_{n-2k}^{(0)}(x).$$

Proof. By Theorem 3.4, for |t| < 1,

$$\sum_{n=0}^{\infty} D_n^{(r)}(x) \frac{t^n}{n!} = (1+t^2) \sum_{n=0}^{\infty} D_n^{(r+1)}(x) \frac{t^n}{n!} = (1+t^2)^{-r} \sum_{n=0}^{\infty} D_n^{(0)}(x) \frac{t^n}{n!}.$$

Now comparing the coefficients of t^n on both sides yields the result. Finally we state the linearization formula for $D_m^{(r)}(x)D_n^{(r)}(x)$.

Theorem 3.7. Let m and n be nonnegative integers. Then

(3.16)
$$D_m^{(r)}(x)D_n^{(r)}(x) = \sum_{k=0}^{\min\{m,n\}} {m \choose k} {n \choose k} k!^2 {2r+m+n-k \choose k} D_{m+n-2k}^{(r)}(x).$$

Proof. This is immediate from Theorem 2.7 and Lemma 3.1.

Acknowledgments

The author was supported by the National Natural Science Foundation of China (Grant No. 11371163).

References

- [1] G. Andrews, R. Askey and R. Roy, *Special Functions*, Encyclopedia of Mathematical Applications, Vol.71, Cambridge University Press, Cambridge, 1999.
- [2] C. Banderier and S. Schwer, Why Delannoy numbers?, J. Stat. Planning Inference 135(2005), 40-54.
- [3] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, *Higher Transcendental Functions*, *Vol.II*, McGraw-Hill, New York, 1953. Based, in part, on notes left by Harry Bateman.
- [4] G. Gasper and M. Rahman, *Basic Hypergeometric Series*, 2nd edition, Encyclopedia of Mathematics and its Applications, Vol.96, Cambridge University Press, Cambridge, 2004.
- [5] H.W. Gould, Combinatorial Identities, A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, West Virginia University, Morgantown, WV, 1972.
- [6] V.J.W. Guo, Proof of Sun's conjectures on integer-valued polynomials, J. Math. Anal. Appl. 444(2016), 182-191.
- [7] L.J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge,
- [8] Z.W. Sun, Supercongruences involving dual sequences, Finite Fields Appl. 46 (2017), 179-216.