# TURÁN's Problem for Trees 

Zhi-Hong Sun ${ }^{1 *}$ and Lin-Lin Wang ${ }^{2 \dagger}$<br>${ }^{1}$ School of Mathematical Sciences, Huaiyin Normal University Huaian, Jiangsu 223001, People's Republic of China<br>${ }^{2}$ Center for Combinatorics, Nankai University<br>Tianjin 300071, People's Republic of China


#### Abstract

For a forbidden graph $L$, let $e x(p ; L)$ denote the maximal number of edges in a simple graph of order $p$ not containing $L$. Let $T_{n}$ denote the unique tree on $n$ vertices with maximal degree $n-2$, and let $T_{n}^{*}=(V, E)$ be the tree on $n$ vertices with $V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E=$ $\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-3}, v_{n-3} v_{n-2}, v_{n-2} v_{n-1}\right\}$. In the paper we give exact values of $e x\left(p ; T_{n}\right)$ and $e x\left(p ; T_{n}^{*}\right)$.


2000 Mathematics Subject Classification: Primary 05C35; Secondary 05C05.

## 1. Introduction

In the paper, all graphs are simple graphs. For a graph $G=(V(G), E(G))$ let $e(G)=$ $|E(G)|$ be the number of edges in $G$ and let $\Delta(G)$ be the maximal degree of $G$. For a family of forbidden graphs $L$, let $e x(p ; L)$ denote the maximal number of edges in a graph of order $p$ not containing any graphs in $L$. The corresponding Turán's problem is to evaluate $e x(p ; L)$. For a graph $G$ of order $p$, if $G$ does not contain any graphs in $L$ and $e(G)=e x(p ; L)$, we say that $G$ is an extremal graph. In the paper we also use $E x(p ; L)$ to denote the set of extremal graphs of order $p$ not containing any graphs in $L$.

[^0]Let $\mathbb{N}$ be the set of positive integers. Let $p, n \in \mathbb{N}$ with $p \geq n \geq 2$. For a given tree $T$ on $n$ vertices, it is difficult to determine the value of $e x(p ; T)$. The famous ErdösSós conjecture asserts that $e x(p ; T) \leq \frac{(n-2) p}{2}$. For the progress on the Erdös-Sós conjecture, see $[2,6,7,8]$. Write $p=k(n-1)+r$, where $k \in \mathbb{N}$ and $r \in\{0,1, \ldots, n-$ $2\}$. Let $P_{n}$ be the path on $n$ vertices. In [3] Faudree and Schelp showed that

$$
\begin{equation*}
e x\left(p ; P_{n}\right)=k\binom{n-1}{2}+\binom{r}{2} . \tag{1.1}
\end{equation*}
$$

In the special case $r=0,(1.1)$ is due to Erdös and Gallai [1]. Let $K_{1, n-1}$ denote the unique tree on $n$ vertices with $\Delta\left(K_{1, n-1}\right)=n-1$, and let $T_{n}$ denote the unique tree on $n$ vertices with $\Delta\left(T_{n}\right)=n-2$. In Section 2 we determine $e x\left(p ; K_{1, n-1}\right)$, and in Section 3 we obtain the exact value of $e x\left(p ; T_{n}\right)$.

For $n \geq 4$ let $T_{n}^{*}=(V, E)$ be the tree on $n$ vertices with $V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-3}, v_{n-3} v_{n-2}, v_{n-2} v_{n-1}\right\}$. In Section 4 we completely determine the value of $\operatorname{ex}\left(p ; T_{n}^{*}\right)$.

In addition to the above notation, throughout the paper we also use the following notation: $[x]$ - the greatest integer not exceeding $x, d(v)$-the degree of the vertex $v$ in a graph, $\Gamma(v)$ - the set of vertices adjacent to the vertex $v, d(u, v)$-the distance between the two vertices $u$ and $v$ in a graph, $K_{n}$-the complete graph on $n$ vertices, $K_{m, n}$ - the complete bipartite graph with $m$ and $n$ vertices in the bipartition, $G\left[V_{0}\right]$ - the subgraph of $G$ induced by vertices in the set $V_{0}, G-V_{0}$-the subgraph of $G$ obtained by deleting vertices in $V_{0}$ and all edges incident with them, $G-M$-the graph obtained by deleting all edges in $M$ from the graph $G$, $G+M$-the graph obtained by adding all edges in $M$ from the graph $G$.

## 2. The Evaluation of $e x\left(p ; K_{1, n-1}\right)$

Theorem 2.1. Let $p, n \in \mathbb{N}$ with $p \geq n-1 \geq 1$. Then $\operatorname{ex}\left(p ; K_{1, n-1}\right)=\left[\frac{(n-2) p}{2}\right]$.
Proof. Clearly $e x\left(n-1 ; K_{1, n-1}\right)=e\left(K_{n-1}\right)=\frac{(n-1)(n-2)}{2}$. Thus the result is true for $p=n-1$. Now we assume $p \geq n$. Suppose that $G$ is a graph of order $p$ without $K_{1, n-1}$. Then clearly $\Delta(G) \leq n-2$ and so $2 e(G)=\sum_{v \in V(G)} d(v) \leq p \Delta(G) \leq$ $(n-2) p$. Hence, $e x\left(p ; K_{1, n-1}\right) \leq \frac{(n-2) p}{2}$. As $e x\left(p ; K_{1, n-1}\right)$ is an integer, we have

$$
\begin{equation*}
e x\left(p ; K_{1, n-1}\right) \leq\left[\frac{(n-2) p}{2}\right] \tag{2.1}
\end{equation*}
$$

Clearly $\operatorname{ex}\left(p ; K_{1,1}\right)=0$. So the result holds for $n=2$. As $\left[\frac{p}{2}\right] K_{2}$ does not contain $K_{1,2}$, we have $\operatorname{ex}\left(p ; K_{1,2}\right) \geq\left[\frac{p}{2}\right]$. This together with (2.1) gives $\operatorname{ex}\left(p ; K_{1,2}\right)=\left[\frac{p}{2}\right]$. So the result is true for $n=3$.

Suppose that $G$ is a Hamilton cycle with $p$ vertices. Then $G$ does not contain $K_{1,3}$. Thus we have ex $\left(p ; K_{1,3}\right) \geq p$. Combining this with (2.1) yields $e x\left(p ; K_{1,3}\right)=$ $p$. So the result is true for $n=4$.

Now we assume $n \geq 5$. By (2.1), it suffices to show that $e x\left(p ; K_{1, n-1}\right) \geq\left[\frac{(n-2) p}{2}\right]$. Set $k=\left[\frac{p+1}{2}\right], V=\{1,2, \ldots, 2 k\}$ and $M=\{12,34, \cdots,(2 k-1)(2 k)\}$. Let us consider the following four cases.

Case 1. $2 \mid p$ and $2 \nmid n$. Set $G=(V, E)$, where

$$
E=\{i j \mid i, j \in V, j-i \in\{1,2 k-1, k, k \pm 1, \ldots, k \pm(n-5) / 2\}\} .
$$

Clearly $G$ is an $(n-2)$-regular graph of order $p$ and so $G$ does not contain $K_{1, n-1}$. Hence, $e x\left(p ; K_{1, n-1}\right) \geq e(G)=\frac{(n-2) p}{2}=\left[\frac{(n-2) p}{2}\right]$.

Case 2. $2 \mid p$ and $2 \mid n$. Set

$$
E_{1}=\{i j \mid i, j \in V, j-i \in\{1,2 k-1, k, k \pm 1, \ldots, k \pm(n-4) / 2\}\} .
$$

Then $M \subset E_{1}$. Let $G=\left(V, E_{1}-M\right)$. We see that $G$ is an $(n-2)$-regular graph of order $p$ and so $G$ does not contain $K_{1, n-1}$. Hence, $e x\left(p ; K_{1, n-1}\right) \geq e(G)=\frac{(n-2) p}{2}=$ $\left[\frac{(n-2) p}{2}\right]$.

Case 3. $2 \nmid p$ and $2 \mid n$. Let $G$ be the ( $n-2$ )-regular graph of order $2 k$ constructed in Case 2. Let

$$
v_{1}=k-\frac{n}{2}+3, v_{2}=k-\frac{n}{2}+4, \ldots, v_{n-3}=k+\frac{n}{2}-1 \quad \text { and } \quad v_{n-2}=2 k .
$$

Then clearly $v_{1}, \ldots, v_{n-2}$ are all the vertices adjacent to the vertex 1 . If $2 \left\lvert\, k-\frac{n}{2}\right.$, then $v_{1}, v_{3}, \ldots, v_{n-5}$ are odd and so $v_{1} v_{2}, v_{3} v_{4}, \ldots, v_{n-5} v_{n-4} \in M$. Thus, $v_{1} v_{2}, v_{3} v_{4}, \ldots$, $v_{n-5} v_{n-4} \notin E(G)$. As $2 k-\left(k+\frac{n}{2}-1\right)=k-\frac{n-2}{2}$, we see that $v_{n-3} v_{n-2} \notin E_{1}$ and so $v_{n-3} v_{n-2} \notin E(G)$. Let

$$
G^{\prime}=G-\{1\}+\left\{v_{1} v_{2}, v_{3} v_{4}, \ldots, v_{n-5} v_{n-4}, v_{n-3} v_{n-2}\right\} .
$$

We see that $G^{\prime}$ is an $(n-2)$-regular graph of order $p$. Hence, ex $\left(p ; K_{1, n-1}\right) \geq$ $e\left(G^{\prime}\right)=\frac{(n-2) p}{2}=\left[\frac{(n-2) p}{2}\right]$.

If $2 \nmid k-\frac{n}{2}$, then $v_{2}, v_{4}, \ldots, v_{n-4}$ are odd and so $v_{2} v_{3}, v_{4} v_{5}, \ldots, v_{n-4} v_{n-3} \in M$. Thus, $v_{2} v_{3}, v_{4} v_{5}, \ldots, v_{n-4} v_{n-3} \notin E(G)$. As $p+1=2 k>n$ we have $k-\frac{n}{2}+3>3$ and so $2,3 \notin\left\{v_{1}, \ldots, v_{n-2}\right\}$. Clearly $2 v_{n-2}, 3 v_{1} \notin E_{1}$ and so $2 v_{n-2}, 3 v_{1} \notin E(G)$. Let

$$
G^{\prime}=G-\{1\}-\{23\}+\left\{v_{2} v_{3}, v_{4} v_{5}, \ldots, v_{n-4} v_{n-3}, 3 v_{1}, 2 v_{n-2}\right\} .
$$

Then $G^{\prime}$ is an $(n-2)$-regular graph of order $p$. Hence, $e x\left(p ; K_{1, n-1}\right) \geq e\left(G^{\prime}\right)=$ $\frac{(n-2) p}{2}=\left[\frac{(n-2) p}{2}\right]$.

Case 4. $2 \nmid p$ and $2 \nmid n$. As $2 \mid n+1$, we can construct an $(n-1)$-regular graph $G_{1}$ of order $p$ by using the argument in Case 3 . Let

$$
M_{1}= \begin{cases}\{23,45, \ldots,(2 k-2)(2 k-1), k(2 k)\} & \text { if } 2 \left\lvert\, k-\frac{n+1}{2}\right. \\ \left\{2(2 k), 3\left(k+3-\frac{n+1}{2}\right), 45,67, \ldots,(2 k-2)(2 k-1)\right\} & \text { if } 2 \nmid k-\frac{n+1}{2}\end{cases}
$$

It is easily seen that $M_{1} \subset G_{1}$. Set $G_{2}=G_{1}-M_{1}$. Then for $i=2,3, \ldots, 2 k$ we have

$$
d_{G_{2}}(i)= \begin{cases}n-3 & \text { if } 2 \left\lvert\, k-\frac{n+1}{2}\right. \text { and } i=k, \text { or if } 2 \nmid k-\frac{n+1}{2} \text { and } i=k+3-\frac{n+1}{2}, \\ n-2 & \text { otherwise. }\end{cases}
$$

Thus $G_{2}$ does not contain $K_{1, n-1}$ and

$$
2 e\left(G_{2}\right)=\sum_{i=2}^{2 k} d_{G_{2}}(i)=n-3+(2 k-2)(n-2)=(n-2) p-1
$$

Hence $e x\left(p ; K_{1, n-1}\right) \geq e\left(G_{2}\right)=\frac{(n-2) p-1}{2}=\left[\frac{(n-2) p}{2}\right]$.
Putting all the above together we prove the theorem.
Corollary 2.1. Let $k, p \in \mathbb{N}$ with $p \geq k+2$. Then there exists a $k$-regular graph of order $p$ if and only if $2 \mid k p$.

Proof. If $G$ is a $k-$ regular graph of order $p$, then $k p=2 e(G)$ and so $2 \mid k p$. If $2 \mid k p$, by the proof of Theorem 2.1 we know that there exists a $k-$ regular graph of order $p$.

Remark 2.1. In [4] Kirkman showed that $K_{2 n}$ is 1 -factorable. In [5] Petersen proved that a graph $G$ is 2 -factorable if and only if $G$ is $2 p$-regular. Thus, Corollary 2.1 can be deduced from [4] and [5].

## 3. The Evaluation of $e x\left(p ; T_{n}\right)$

Theorem 3.1. Let $p, n \in \mathbb{N}$ with $p \geq n \geq 5$. Let $r \in\{0,1, \ldots, n-2\}$ be given by $p \equiv r(\bmod n-1)$. Then

$$
e x\left(p ; T_{n}\right)= \begin{cases}{\left[\frac{(n-2)(p-1)-r-1}{2}\right]} & \text { if } n \geq 7 \text { and } 2 \leq r \leq n-4 \\ \frac{(n-2) p-r(n-1-r)}{2} & \text { otherwise. }\end{cases}
$$

Proof. Let $G$ be an extremal graph of order $p$ not containing $T_{n}$. Suppose $v_{0} \in V(G)$ and $G_{0}$ is the component of $G$ such that $v_{0} \in V\left(G_{0}\right)$. If $d\left(v_{0}\right)=m \geq n-1$, as $G$ does not contain $T_{n}$ we see that $G_{0}$ is a copy of $K_{1, m}$. Suppose $m+1=k^{\prime}(n-1)+r^{\prime}$ with $k^{\prime} \in \mathbb{N}$ and $r^{\prime} \in\{0,1, \ldots, n-2\}$. Then $k^{\prime} K_{n-1} \cup K_{r^{\prime}}$ does not contain $T_{n}$. As $\frac{n-2}{2}>1$ and $\binom{r^{\prime}}{2}-\left(r^{\prime}-1\right)=\frac{\left(r^{\prime}-1\right)\left(r^{\prime}-2\right)}{2} \geq 0$, we find
$e\left(k^{\prime} K_{n-1} \cup K_{r^{\prime}}\right)=k^{\prime}\binom{n-1}{2}+\binom{r^{\prime}}{2}>k^{\prime}(n-1)+r^{\prime}-1=m=e\left(K_{1, m}\right)=e\left(G_{0}\right)$.
Hence $G_{0} \notin E x\left(m+1 ; T_{n}\right)$ and so $G \notin E x\left(p ; T_{n}\right)$. This contradicts the assumption. Therefore $d\left(v_{0}\right) \leq n-2$ and so $\Delta(G) \leq n-2$. If $d\left(v_{0}\right)=n-2$, as $G_{0}$ is an extremal graph not containing $T_{n}$ we see that $G_{0}$ is a copy of $K_{n-1}$.

Suppose $p=k(n-1)+r$. Then $k \in \mathbb{N}$. From the above we may assume $G=$ $s K_{n-1} \cup G_{1}$ with $s \in\{0,1, \ldots, k\}$ and $\Delta\left(G_{1}\right) \leq n-3$. If $s=k$, then clearly $G_{1}=$ $K_{r}$ and so $e(G)=k\binom{n-1}{2}+\binom{r}{2}$. If $s \leq k-1$, as $\Delta\left(G_{1}\right) \leq n-3$ implies $G_{1}$ does not contain any copies of $T_{n}$, we see that $G_{1} \in \operatorname{Ex}\left((k-s)(n-1)+r ; K_{1, n-2}\right)$. By Theorem 2.1 we have $e\left(G_{1}\right)=\left[\frac{(n-3)((k-s)(n-1)+r)}{2}\right]$. Hence

$$
e(G)=e\left(s K_{n-1} \cup G_{1}\right)=s\binom{n-1}{2}+\left[\frac{(n-3)((k-s)(n-1)+r)}{2}\right] .
$$

Set $f(x)=x\binom{n-1}{2}+\left[\frac{(n-3)((k-x)(n-1)+r)}{2}\right]$. Then

$$
\begin{aligned}
f(x+1) & =(x+1)\binom{n-1}{2}+\left[\frac{(n-3)((k-x)(n-1)+r)-(n-3)(n-1)}{2}\right] \\
& =x\binom{n-1}{2}+\left[\frac{(n-3)((k-x)(n-1)+r)}{2}+\frac{n-1}{2}\right]>f(x) .
\end{aligned}
$$

Thus, $f(k-1)>f(k-2)>\ldots>f(0)$. Since $G$ is an extremal graph, by the above we must have $s=k-1$ or $k$ and so

$$
\begin{aligned}
& \operatorname{ex}\left(p ; T_{n}\right)=e(G) \\
& =\max \left\{(k-1)\binom{n-1}{2}+\left[\frac{(n-3)(n-1+r)}{2}\right], k\binom{n-1}{2}+\binom{r}{2}\right\} .
\end{aligned}
$$

Observe that

$$
\frac{(n-3)(n-1+r)}{2}-\frac{r(r-1)}{2}-\frac{(n-1)(n-2)}{2}=\frac{r(n-2-r)-(n-1)}{2} .
$$

We then have

$$
e x\left(p ; T_{n}\right)=k\binom{n-1}{2}+\binom{r}{2}+\max \left\{0,\left[\frac{r(n-2-r)-(n-1)}{2}\right]\right\} .
$$

If $r \in\{1, n-3, n-2\}$, then clearly $\left[\frac{r(n-2-r)-(n-1)}{2}\right]<0$. For $n=6$ and $r=2$ we also have $\left[\frac{r(n-2-r)-(n-1)}{2}\right]=-1<0$. Now assume $n \geq 7$ and $2 \leq r \leq n-4$. Then

$$
\begin{aligned}
r(n-2-r)-(n-1) & =\frac{n^{2}-8 n+8}{4}-\left(r-\frac{n-2}{2}\right)^{2} \\
& \geq \frac{n^{2}-8 n+8}{4}-\left(2-\frac{n-2}{2}\right)^{2}=n-7 \geq 0
\end{aligned}
$$

and so $\left[\frac{r(n-2-r)-(n-1)}{2}\right] \geq 0$. Hence

$$
\begin{aligned}
& \operatorname{ex}\left(p ; T_{n}\right) \\
& = \begin{cases}k\binom{n-1}{2}+\binom{r}{2}+\left[\frac{r(n-2-r)-(n-1)}{2}\right] & \text { if } n \geq 7 \text { and } 2 \leq r \leq n-4, \\
k\binom{n-1}{2}+\binom{r}{2} & \text { otherwise. }\end{cases}
\end{aligned}
$$

To see the result, we note that $k\binom{n-1}{2}+\binom{r}{2}=\frac{(n-2)(p-r)+r^{2}-r}{2}=\frac{(n-2) p-r(n-1-r)}{2}$ and

$$
k\binom{n-1}{2}+\binom{r}{2}+\left[\frac{r(n-2-r)-(n-1)}{2}\right]=\left[\frac{(n-2)(p-1)-r-1}{2}\right] .
$$

## 4. The Evaluation of $e x\left(p ; T_{n}^{*}\right)$

For $n \geq 4$ we recall that $T_{n}^{*}=(V, E)$ is the tree on $n$ vertices with $V=$ $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-3}, v_{n-3} v_{n-2}, v_{n-2} v_{n-1}\right\}$. Clearly $T_{4}^{*}=P_{4}$ and $T_{5}^{*}=P_{5}$.
Lemma 4.1. Let $p, n \in \mathbb{N}$ with $p \geq n \geq 6$, and let $G \in E x\left(p ; T_{n}^{*}\right)$. Then $\Delta(G) \leq n-2$.
Proof. Suppose that $v_{0} \in V(G), d\left(v_{0}\right)=m \geq n-1$ and $\Gamma\left(v_{0}\right)=\left\{v_{1}, \ldots, v_{m}\right\}$. Let $G_{0}$ be the component of $G$ with $v_{0} \in V\left(G_{0}\right)$. If there are exactly $t$ vertices $u_{1}, \ldots, u_{t} \in$ $V\left(G_{0}\right)$ such that $d\left(u_{1}, v_{0}\right)=\cdots=d\left(u_{t}, v_{0}\right)=2$, then clearly $d\left(u_{1}\right)=\cdots=d\left(u_{t}\right)=$ $1, V\left(G_{0}\right)=\left\{v_{0}, v_{1}, \ldots, v_{m}, u_{1}, \ldots, u_{t}\right\}$ and $\left|V\left(G_{0}\right)\right|=1+m+t$. If $u_{i} v_{j} \notin E\left(G_{0}\right)$ for some $j \in\{1,2, \ldots, m\}$ and every $i=1,2, \ldots, t$, then clearly $d\left(v_{j}\right) \leq 2$. Thus, $e\left(G_{0}\right) \leq m+t+\frac{m}{2}$. Set $1+m+t=k(n-1)+r(0 \leq r<n-1)$. We see that

$$
\begin{aligned}
& k\binom{n-1}{2}+\binom{r}{2}-\frac{3 m}{2}-t \\
& =\frac{(n-2)(1+m+t-r)+r(r-1)-3 m-2 t}{2} \\
& =\frac{(m+t)(n-5)-r(n-1-r)+(n-2)+t}{2} \\
& \geq \frac{(n-1)(n-5)+(n-2)-r(n-1-r)}{2} \\
& \geq \frac{(n-1)(n-5)+n-2-\frac{(n-1)^{2}}{4}}{2}=\frac{3(n-3)^{2}-16}{8}>0 .
\end{aligned}
$$

Since $k K_{n-1} \cup K_{r}$ does not contain any copies of $T_{n}^{*}$, applying the above we deduce

$$
e\left(G_{0}\right) \leq \frac{3 m+2 t}{2}<k\binom{n-1}{2}+\binom{r}{2}=e\left(k K_{n-1} \cup K_{r}\right) \leq e x\left(1+m+t ; T_{n}^{*}\right) .
$$

As $G$ is an extremal graph not containing $T_{n}^{*}$, we must have $e\left(G_{0}\right)=e x(1+m+$ $\left.t ; T_{n}^{*}\right)$. This contradicts the above inequality $e\left(G_{0}\right)<e x\left(1+m+t ; T_{n}^{*}\right)$. Hence the assumption $d\left(v_{0}\right) \geq n-1$ is not true. Thus $\Delta(G) \leq n-2$. The proof is now complete.

Lemma 4.2. Let $p, n \in \mathbb{N}$ with $p \geq n \geq 5$, and let $G \in \operatorname{Ex}\left(p ; T_{n}^{*}\right)$. Suppose that $v_{0} \in V(G), d\left(v_{0}\right)=n-2$ and $G_{0}$ is the component of $G$ such that $v_{0} \in V\left(G_{0}\right)$. Then $G_{0} \cong K_{n-1}$.

Proof. Suppose $\Gamma\left(v_{0}\right)=\left\{v_{1}, \ldots, v_{n-2}\right\}$ and there are exactly $t$ vertices $u_{1}, \ldots, u_{t} \in$ $V\left(G_{0}\right)$ such that $d\left(u_{1}, v_{0}\right)=\cdots=d\left(u_{t}, v_{0}\right)=2$. We first assume $t \geq 1$. Then clearly $d\left(u_{1}\right)=\cdots=d\left(u_{t}\right)=1$ and $V\left(G_{0}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-2}, u_{1}, \ldots, u_{t}\right\}$. If $u_{1} v_{i} \in E(G)$ for some $i \in\{1,2, \ldots, n-2\}$, then clearly $v_{i} v_{j} \notin E(G)$ for all $j \in\{1,2, \ldots, n-2\} \backslash$ $\{i\}$. Thus,

$$
e\left(G_{0}\right) \leq n-2+t+\binom{n-2-t}{2} \leq\binom{ n-2}{2}+t+1
$$

Assume $t=q(n-1)+t_{0}$ with $q \in \mathbb{Z}$ and $t_{0} \in\{0,1, \ldots, n-2\}$. Then

$$
\begin{aligned}
& e\left((1+q) K_{n-1} \cup K_{t_{0}}\right)-\binom{n-2}{2}-t-1 \\
& =(1+q)\binom{n-1}{2}+\binom{t_{0}}{2}-\binom{n-2}{2}-q(n-1)-t_{0}-1 \\
& =n-4+q \frac{(n-1)(n-4)}{2}+\frac{\left(t_{0}-1\right)\left(t_{0}-2\right)}{2}>0
\end{aligned}
$$

As $(1+q) K_{n-1} \cup K_{t_{0}}$ does not contain $T_{n}^{*}$, applying the above we get

$$
e\left(G_{0}\right) \leq\binom{ n-2}{2}+t+1<e\left((1+q) K_{n-1} \cup K_{t_{0}}\right) \leq e x\left(n-1+t ; T_{n}^{*}\right)
$$

Since $G_{0}$ is an extremal graph of order $n-1+t$ not containing $T_{n}^{*}$, we must have $e\left(G_{0}\right)=e x\left(n-1+t ; T_{n}^{*}\right)$. This contradicts the above assertion. So $t \geq 1$ is not true and hence $V\left(G_{0}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-2}\right\}$. As $G_{0}$ is an extremal graph not containing $T_{n}^{*}$, we see that $G_{0} \cong K_{n-1}$. This proves the lemma.

Lemma 4.3. Let $n, t \in \mathbb{N}$ with $n \geq 4$, and let $G \in \operatorname{Ex}\left(n-2+t ; T_{n}^{*}\right)$. Suppose that $G$ is connected and $\Delta(G)=n-3$. Then $t \leq n-4$ and $e(G) \leq(n-3)^{2}$.

Proof. Suppose $v_{0} \in V(G), d\left(v_{0}\right)=n-3, \Gamma\left(v_{0}\right)=\left\{v_{1}, \ldots, v_{n-3}\right\}$ and $V(G)=$ $\left\{v_{0}, v_{1}, \ldots, v_{n-3}, u_{1}, \ldots, u_{t}\right\}$. Then $d\left(u_{i}, v_{0}\right)=2$ and $u_{1}, \ldots, u_{t}$ must be independent. As $G$ is connected and $u_{i}$ is adjacent to some vertex in $\Gamma\left(v_{0}\right)$, we have

$$
e(G) \leq \sum_{i=1}^{n-3} d\left(v_{i}\right) \leq \sum_{i=1}^{n-3}(n-3)=(n-3)^{2}
$$

On the other hand,

$$
e\left(K_{n-1} \cup K_{n-4}\right)=\frac{(n-1)(n-2)+(n-4)(n-5)}{2}=n^{2}-6 n+11>(n-3)^{2}
$$

Thus, for $t \geq n-3$ we have

$$
\begin{aligned}
e(G) & =e x\left(n-2+t ; T_{n}^{*}\right) \geq e\left(K_{n-1} \cup K_{n-4} \cup(t-(n-3)) K_{1}\right) \\
& =e\left(K_{n-1} \cup K_{n-4}\right)>(n-3)^{2}
\end{aligned}
$$

This contradicts the fact $e(G) \leq(n-3)^{2}$. So $t \leq n-4$. The proof is now complete.

Lemma 4.4. Let $p, n \in \mathbb{N}$ with $p \geq n \geq 4$, and $G \in \operatorname{Ex}\left(p ; T_{n}^{*}\right)$. Suppose $\Delta(G) \leq$ $n-3$. Then $p \leq 2 n-6$.
Proof. Assume $p=2 n-4+t$. If $t \geq 2 n$, we may write $t-2=k(n-1)+r$, where $k \in \mathbb{N}$ and $r \in\{0,1, \ldots, n-2\}$. Let $G_{0} \in E x\left(n-1+r ; K_{1, n-3}\right)$. From Theorem 2.1 we have $e\left(G_{0}\right)=\left[\frac{(n-1+r)(n-4)}{2}\right]$. Clearly $k(n-1)=t-2-r \geq 2 n-2-r>r+1$. Thus,

$$
\begin{aligned}
e\left((k+1) K_{n-1} \cup G_{0}\right) & =(k+1)\binom{n-1}{2}+\left[\frac{(n-1+r)(n-4)}{2}\right] \\
& \geq \frac{(k+1)(n-1)(n-2)+(n-1+r)(n-4)-1}{2} \\
& =\frac{((k+2)(n-1)+r)(n-3)}{2}+\frac{k(n-1)-r-1}{2} \\
& >\frac{((k+2)(n-1)+r)(n-3)}{2}=\frac{(n-3) p}{2} .
\end{aligned}
$$

On the other hand, as $(k+1) K_{n-1} \cup G_{0}$ does not contain $T_{n}^{*}$, we have

$$
e\left((k+1) K_{n-1} \cup G_{0}\right) \leq e x\left(p ; T_{n}^{*}\right)=e(G) \leq \frac{(n-3) p}{2}
$$

This is a contradiction. Hence $t<2 n$.
If $t=2 n-1$, then $p=2 n-4+t=3(n-1)+n-2$ and so

$$
\frac{(n-3) p}{2}<e\left(3 K_{n-1} \cup K_{n-2}\right) \leq e x\left(p ; T_{n}^{*}\right)=e(G) \leq \frac{(n-3) p}{2} .
$$

This is also a contradiction.
If $n-1 \leq t<2 n-1$, setting $G_{0} \in E x\left(t-2 ; K_{1, n-3}\right)$ and using Theorem 2.1 we see that

$$
e\left(G_{0}\right)=e x\left(t-2 ; K_{1, n-3}\right)=\left[\frac{(n-4)(t-2)}{2}\right]
$$

It is clear that $2 K_{n-1} \cup G_{0}$ does not contain $T_{n}^{*}$ as a subgraph and

$$
\begin{aligned}
e\left(2 K_{n-1} \cup G_{0}\right) & =2\binom{n-1}{2}+\left[\frac{(n-4)(t-2)}{2}\right] \\
& \geq(n-1)(n-2)+\frac{(n-4)(t-2)-1}{2} \\
& =\frac{(2 n-4+t)(n-3)}{2}+\frac{2 n-1-t}{2}>\frac{(2 n-4+t)(n-3)}{2} .
\end{aligned}
$$

On the other hand,

$$
e\left(2 K_{n-1} \cup G_{0}\right) \leq e x\left(2 n-4+t ; T_{n}^{*}\right)=e(G) \leq \frac{(2 n-4+t)(n-3)}{2}
$$

This is a contradiction.
By the above, we may assume $t \leq n-2$. If $t=n-2$, then

$$
\begin{aligned}
e x\left(3 n-6 ; T_{n}^{*}\right) & \geq e\left(2 K_{n-1} \cup K_{n-4}\right)=\frac{2(n-1)(n-2)+(n-4)(n-5)}{2} \\
& >\frac{(3 n-6)(n-3)}{2} \geq e(G)=e x\left(3 n-6 ; T_{n}^{*}\right) .
\end{aligned}
$$

This is a contradiction. If $t=n-3$, then

$$
\begin{aligned}
e x\left(3 n-7 ; T_{n}^{*}\right) & \geq e\left(K_{n-1} \cup K_{n-3, n-3}\right)=\frac{(n-1)(n-2)}{2}+(n-3)^{2} \\
& >\frac{(3 n-7)(n-3)}{2} \geq e(G)=e x\left(3 n-7 ; T_{n}^{*}\right) .
\end{aligned}
$$

This is also a contradiction. Thus $t \neq n-2, n-3$.
Now we assume that $1 \leq t \leq n-4$. Suppose $H \in \operatorname{Ex}\left(n-3 ; K_{1, n-3-t}\right)$ and $V(H)=\left\{v_{1}, \ldots, v_{n-3}\right\}$. We construct a graph $G_{0}=\left(V\left(G_{0}\right), E\left(G_{0}\right)\right)$ of order $n-$ $3+t$ by defining $V\left(G_{0}\right)=\left\{u_{1}, \ldots, u_{t}\right\} \cup V(H)$ and $E\left(G_{0}\right)=\left\{u_{i} v_{j}: 1 \leq i \leq t, 1 \leq\right.$ $j \leq n-3\} \cup E(H)$. It is easily seen that $d_{G_{0}}\left(v_{i}\right) \leq n-4(1 \leq i \leq n-3)$ and so $G_{0}$ does not contain any copies of $T_{n}^{*}$. Hence,

$$
\begin{aligned}
e\left(K_{n-1} \cup G_{0}\right) & =\binom{n-1}{2}+e\left(G_{0}\right) \\
& \leq e x\left(2 n-4+t ; T_{n}^{*}\right)=e(G) \leq \frac{(2 n-4+t)(n-3)}{2} .
\end{aligned}
$$

Using Theorem 2.1 we see that

$$
\begin{aligned}
e\left(G_{0}\right) & =(n-3) t+\left[\frac{(n-3)(n-4-t)}{2}\right] \\
& \geq(n-3) t+\frac{(n-3)(n-4-t)-1}{2} \\
& =\frac{(2 n-4+t)(n-3)}{2}-\binom{n-1}{2}+\frac{1}{2} \\
& >\frac{(2 n-4+t)(n-3)}{2}-\binom{n-1}{2}
\end{aligned}
$$

this contradicts the above assertion.
By the above we have $t \leq 0$ and so $p \leq 2 n-4$. If $p=2 n-4$, since $K_{n-1} \cup K_{n-3}$ does not contain $T_{n}^{*}$ we have

$$
\begin{aligned}
e x\left(2 n-4 ; T_{n}^{*}\right) & \geq e\left(K_{n-1} \cup K_{n-3}\right)=\frac{(n-1)(n-2)+(n-3)(n-4)}{2} \\
& >\frac{(2 n-4)(n-3)}{2} \geq e(G)=e x\left(2 n-4 ; T_{n}^{*}\right) .
\end{aligned}
$$

This is a contradiction.
Now we assume $p=2 n-5$. It is clear that

$$
e\left(K_{n-1} \cup K_{n-4}\right)=\frac{(n-1)(n-2)+(n-4)(n-5)}{2}=n^{2}-6 n+11 .
$$

As $K_{n-1} \cup K_{n-4}$ does not contain $T_{n}^{*}$, we see that $n^{2}-6 n+11 \leq \operatorname{ex}\left(2 n-5 ; T_{n}^{*}\right)=$ $e(G)$. If $\Delta(G) \leq n-4$, then clearly $e(G) \leq \frac{(2 n-5)(n-4)}{2}<n^{2}-6 n+11$. This is a contradiction. Hence, $\Delta(G)=n-3$. Suppose that $G_{1}$ is the component of $G$ such that $\Delta\left(G_{1}\right)=n-3$. If $\left|V\left(G_{1}\right)\right|=n-2+s$ for some $s \in\{0,1, \ldots, n-3\}$, by Lemma 4.3 we have $s \leq n-4$. As $G$ is an extremal graph we have $G \backslash G_{1} \cong K_{n-3-s}$ and so

$$
\begin{aligned}
e(G) & =e\left(G_{1}\right)+e\left(G \backslash G_{1}\right) \leq \frac{(n-2+s)(n-3)}{2}+\binom{n-3-s}{2} \\
& =\frac{1}{2}\left(s-\frac{n-4}{2}\right)^{2}+\frac{7 n^{2}-40 n+56}{8} \\
& \leq \frac{1}{2}\left(\frac{n-4}{2}\right)^{2}+\frac{7 n^{2}-40 n+56}{8}=n^{2}-6 n+9<n^{2}-6 n+11,
\end{aligned}
$$

this contradicts the above assertion $e(G) \geq n^{2}-6 n+11$. Therefore $p \neq 2 n-5$ and so $p \leq 2 n-6$, which completes the proof.

Theorem 4.1. Let $p, n \in \mathbb{N}$ with $p \geq n-1 \geq 5$, and let $p=k(n-1)+r$ with $k \in \mathbb{N}$ and $r \in\{0,1, \ldots, n-2\}$. Then

$$
\begin{aligned}
& \operatorname{ex}\left(p ; T_{n}^{*}\right) \\
& = \begin{cases}\frac{(k-1)(n-1)(n-2)}{2}+e x\left(n-1+r ; T_{n}^{*}\right) & \text { if } 1 \leq r \leq n-5 ; \\
\frac{(n-2) p-r(n-1-r)}{2} & \text { if } r \in\{0, n-4, n-3, n-2\} .\end{cases}
\end{aligned}
$$

Proof. Suppose $m \in \mathbb{N}$ and $m \geq 2 n-5$. We assert that

$$
\begin{equation*}
e x\left(m ; T_{n}^{*}\right)=\frac{(n-1)(n-2)}{2}+e x\left(m-(n-1) ; T_{n}^{*}\right) \tag{4.1}
\end{equation*}
$$

Assume $G \in E x\left(m ; T_{n}^{*}\right)$. From Lemma 4.1 we know that $\Delta(G) \leq n-2$. As $m \geq$ $2 n-5$, by Lemma 4.4 we have $\Delta(G)=n-2$. Using Lemma 4.2 we see that $G$ has a component isomorphic to $K_{n-1}$ and so (4.1) is true. From (4.1) we deduce that for $k \geq 2$,

$$
\begin{aligned}
& \operatorname{ex}\left(p ; T_{n}^{*}\right)-e x\left(n-1+r ; T_{n}^{*}\right) \\
& =\sum_{s=1}^{k-1}\left\{\operatorname{ex}\left((s+1)(n-1)+r ; T_{n}^{*}\right)-e x\left(s(n-1)+r ; T_{n}^{*}\right)\right\}=(k-1)\binom{n-1}{2} .
\end{aligned}
$$

This is also true for $k=1$.
For $r=0$, we have $e x\left(n-1+r ; T_{n}^{*}\right)=e\left(K_{n-1}\right)=\binom{n-1}{2}$ and so

$$
e x\left(p ; T_{n}^{*}\right)=(k-1)\binom{n-1}{2}+\binom{n-1}{2}=k\binom{n-1}{2}=\frac{(n-2) p}{2} .
$$

For $r \in\{n-4, n-3, n-2\}$ we have $n-1+r \geq 2 n-5$ and so by (4.1)

$$
\begin{aligned}
e x\left(p ; T_{n}^{*}\right) & =(k-1)\binom{n-1}{2}+e x\left(n-1+r ; T_{n}^{*}\right) \\
& =(k-1)\binom{n-1}{2}+\binom{n-1}{2}+e x\left(r ; T_{n}^{*}\right)=k\binom{n-1}{2}+e\left(K_{r}\right) \\
& =\frac{(n-2)(p-r)}{2}+\binom{r}{2}=\frac{(n-2) p-r(n-1-r)}{2}
\end{aligned}
$$

as asserted. The proof is now complete.
Theorem 4.2. Let $p, n \in \mathbb{N}$ with $p \geq n \geq 6$ and $p=k(n-1)+1$ with $k \in \mathbb{N}$. Then

$$
e x\left(p ; T_{n}^{*}\right)=\frac{(n-2)(p-1)}{2}
$$

Proof. Let $G_{0} \in \operatorname{Ex}\left(n ; T_{n}^{*}\right)$. If $\Delta\left(G_{0}\right) \leq n-3$, then $e\left(G_{0}\right) \leq \frac{(n-3) n}{2}<\frac{(n-1)(n-2)}{2}$. On the other hand, $e\left(G_{0}\right)=e x\left(n ; T_{n}^{*}\right) \geq e\left(K_{n-1} \cup K_{1}\right)=\frac{(n-1)(n-2)}{2}$. This is a contradiction. Thus $\Delta\left(G_{0}\right) \geq n-2$. Applying Lemmas 4.1 and 4.2 we see that $G_{0} \cong K_{n-1} \cup K_{1}$ and so $e x\left(n ; T_{n}^{*}\right)=e\left(G_{0}\right)=\frac{(n-1)(n-2)}{2}$. Now applying Theorem 4.1 we obtain

$$
e x\left(p ; T_{n}^{*}\right)=\frac{(k-1)(n-1)(n-2)}{2}+e x\left(n ; T_{n}^{*}\right)=k\binom{n-1}{2}=\frac{(n-2)(p-1)}{2} .
$$

This is the result.
Theorem 4.3. Let $p, n \in \mathbb{N}, p \geq n \geq 7$ and $p=k(n-1)+n-5$ with $k \in \mathbb{N}$. Then

$$
e x\left(p ; T_{n}^{*}\right)=\frac{(n-2)(p-2)}{2}+1
$$

Proof. Let $G_{0} \in E x\left(2 n-6 ; T_{n}^{*}\right)$. If $\Delta\left(G_{0}\right) \leq n-3$, then $e\left(G_{0}\right) \leq \frac{(n-3)(2 n-6)}{2}=$ $(n-3)^{2}$. As $K_{n-3, n-3}$ does not contain any copies of $T_{n}^{*}$, we see that $e\left(G_{0}\right) \geq$ $e\left(K_{n-3, n-3}\right)=(n-3)^{2}$. Hence $e\left(G_{0}\right)=(n-3)^{2}$. If $\Delta\left(G_{0}\right) \geq n-2$, by Lemmas 4.1 and 4.2 we have $G_{0} \cong K_{n-1} \cup K_{n-5}$ Thus, $e\left(G_{0}\right)=e\left(K_{n-1} \cup K_{n-5}\right)=$ $\binom{n-1}{2}+\binom{n-5}{2}=n^{2}-7 n+16$. Since $(n-3)^{2}=n^{2}-6 n+9 \geq n^{2}-7 n+16$, we
see that $e x\left(2 n-6 ; T_{n}^{*}\right)=(n-3)^{2}$. Now applying the above and Theorem 4.1 we deduce

$$
\begin{aligned}
e x\left(p ; T_{n}^{*}\right) & =(k-1)\binom{n-1}{2}+e x\left(2 n-6 ; T_{n}^{*}\right)=(k-1)\binom{n-1}{2}+(n-3)^{2} \\
& =k \frac{(n-1)(n-2)}{2}+\frac{n^{2}-9 n+16}{2}=\frac{(n-2)(p-2)}{2}+1 .
\end{aligned}
$$

This is the result.
Lemma 4.5. Let $n, r \in \mathbb{N}$ with $n \geq 7$ and $r \leq n-5$. Then there is an extremal graph $G \in E x\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)$ such that $\Delta(G)=n-3$ and $G$ is connected.

Proof. Let $G \in E x\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)$. Then $\Delta(G) \leq n-3$. For $r=n-5$ we see that $K_{n-3, n-3} \in \operatorname{Ex}\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)$. So the result is true.

Now we assume $r \leq n-6$. Suppose $H \in E x\left(n-3 ; K_{1, n-5-r}\right)$ and $V(H)=$ $\left\{v_{1}, \ldots, v_{n-3}\right\}$. From Theorem 2.1 we know that $e(H)=e x\left(n-3 ; K_{1, n-5-r}\right)=$ $\left[\frac{(n-3)(n-6-r)}{2}\right]$. Now we construct a graph $G_{0}=\left(V\left(G_{0}\right), E\left(G_{0}\right)\right)$ of order $n-1+r$ by defining $V\left(G_{0}\right)=\left\{u_{0}, \ldots, u_{r+1}\right\} \cup V(H)$ and $E\left(G_{0}\right)=\left\{u_{i} v_{j}: 0 \leq i \leq r+1,1 \leq\right.$ $j \leq n-3\} \cup E(H)$. It is easily seen that $d_{G_{0}}\left(v_{i}\right) \leq n-4(1 \leq i \leq n-3), \Delta\left(G_{0}\right)=$ $n-3$ and so $G_{0}$ does not contain any copies of $T_{n}^{*}$ and $K_{1, n-2}$. Thus, for any $G \in \operatorname{Ex}\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)$,

$$
e(G) \geq e\left(G_{0}\right)=(n-3)(r+2)+\left[\frac{(n-3)(n-6-r)}{2}\right]=\left[\frac{(n-3)(n-2+r)}{2}\right]
$$

If $\Delta(G) \leq n-4$, we must have $G \in \operatorname{Ex}\left(n-1+r ; K_{1, n-3}\right)$ and so $e(G)=$ $\left[\frac{(n-4)(n-1+r)}{2}\right]$ by Theorem 2.1. As $G$ is an extremal graph and

$$
\begin{aligned}
{\left[\frac{(n-3)(n-2+r)}{2}\right] } & \geq \frac{(n-3)(n-2+r)-1}{2}=\frac{(n-4)(n-1+r)+r+1}{2} \\
& >\frac{(n-4)(n-1+r)}{2} \geq\left[\frac{(n-4)(n-1+r)}{2}\right]
\end{aligned}
$$

by the above we must have $\Delta(G)=n-3$.
Now assume $\Delta(G)=n-3$. If $G$ is connected, the result is true. Suppose that $G$ is not connected. Let $G_{1}$ be a component of $G$ with $\Delta\left(G_{1}\right)=n-3$ and $\left|V\left(G_{1}\right)\right|=$ $n-1+r-s$. Then $1 \leq s \leq r+1 \leq n-5$. As $G$ is an extremal graph, we must have $G=G_{1} \cup K_{s}$. Thus,

$$
e(G)=e\left(G_{1}\right)+\binom{s}{2} \leq\left[\frac{(n-3)(n-1+r-s)}{2}\right]+\frac{s(s-1)}{2} .
$$

On the other hand, $e(G) \geq e\left(G_{0}\right)=\left[\frac{(n-3)(n-2+r)}{2}\right]$. Therefore,

$$
\left[\frac{(n-3)(n-2+r)}{2}\right]-\left[\frac{(n-3)(n-1+r-s)}{2}\right]-\frac{s(s-1)}{2} \leq 0 .
$$

For $s \geq 2$ we have $(s-1)(n-3-s)=(s-2)(n-4-s)+n-5 \geq n-5$ and so

$$
\begin{aligned}
& {\left[\frac{(n-3)(n-2+r)}{2}\right]-\left[\frac{(n-3)(n-1+r-s)}{2}\right]-\frac{s(s-1)}{2}} \\
& \geq\left[-\frac{s^{2}-(n-2) s+n-3}{2}\right]=\left[\frac{(s-1)(n-3-s)}{2}\right] \geq\left[\frac{n-5}{2}\right]>0 .
\end{aligned}
$$

This contradicts the previous inequality. Thus $s=1$ and hence $e(G)=e\left(G_{1}\right) \leq$ $\left[\frac{(n-3)(n-2+r)}{2}\right]=e\left(G_{0}\right)$. By the previous argument, $e(G) \geq e\left(G_{0}\right)$. Therefore $e(G)=$ $e\left(G_{0}\right)$. As $G_{0}$ is connected and $\Delta\left(G_{0}\right)=n-3$, we see that the result is true.

Lemma 4.6. Let $n, r \in \mathbb{N}$ with $n \geq 11$ and $3 \leq r \leq n-5$. Then there is an extremal graph $G \in E x\left(n-1+r ; T_{n}^{*}\right)$ such that $\Delta(G)=n-3$ and $G$ is connected. Moreover, $e x\left(n-1+r ; T_{n}^{*}\right)=e x\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)$.

Proof. Let $G \in \operatorname{Ex}\left(n-1+r ; T_{n}^{*}\right)$. For $r=n-5$ let $G_{0}=K_{n-3, n-3}$. For $r \leq n-6$ let $G_{0}$ be the graph constructed in the proof of Lemma 4.5. Then $\Delta\left(G_{0}\right)=n-3$ and $G_{0}$ does not contain any copies of $T_{n}^{*}$. Thus, $e(G) \geq e\left(G_{0}\right)$. For $r=n-5$ we have $e\left(G_{0}\right)=(n-3)^{2}$. For $r \leq n-6$ we have $e\left(G_{0}\right)=\left[\frac{(n-3)(n-2+r)}{2}\right]$. Since $(n-3)^{2} \geq \frac{(n-3)(n-2+n-5)}{2}$, we always have $e(G) \geq\left[\frac{(n-3)(n-2+r)}{2}\right]$ for $r \leq n-5$.

If $\Delta(G) \geq n-2$, by Lemmas 4.1 and 4.2 we have $G \cong K_{n-1} \cup K_{r}$. Thus, $e(G)=$ $\binom{n-1}{2}+\binom{r}{2}$. Since $3 \leq r \leq n-5$ and $n \geq 11$ we see that $(r-2)(n-4-r) \geq 4$ and so

$$
\left[\frac{(n-3)(n-2+r)}{2}\right]-\binom{n-1}{2}-\binom{r}{2}=\left[\frac{(r-2)(n-4-r)-4}{2}\right] \geq 0 .
$$

Therefore $e(G) \leq e\left(G_{0}\right)$ and so $e(G)=e\left(G_{0}\right)$. Since $\Delta\left(G_{0}\right)=n-3$ and $G_{0}$ is connected, the result holds in this case.

Now we assume $\Delta(G) \leq n-3$. Then $G \in E x\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)$. Applying Lemma 4.5 we see that the result is true. Thus the lemma is proved.

Lemma 4.7. Let $n, r \in \mathbb{N}$ with $n \geq 7$ and $r \leq n-5$. Then

$$
e x\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)=(n-3)(r+2)+e x\left(n-3 ;\left\{K_{1, n-4-r}, T_{n-2-r}^{*}\right\}\right) .
$$

Moreover, for $r \geq \frac{n-7}{2}$ we have

$$
\begin{aligned}
& \operatorname{ex}\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right) \\
& =(n-3)(r+2)+\max \left\{(n-5-r)^{2},\left[\frac{(n-6-r)(n-3)}{2}\right]\right\} .
\end{aligned}
$$

Proof. It is clear that $\operatorname{ex}\left(2 n-6 ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)=e\left(K_{n-3, n-3}\right)=(n-3)^{2}$. So the result is true for $r=n-5$.

Now assume $r \leq n-6$. By Lemma 4.5, we can choose a graph $G \in \operatorname{Ex}\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)$ so that $\Delta(G)=n-3$ and $G$ is connected. Suppose $u_{0} \in V(G), d\left(u_{0}\right)=n-3, \Gamma\left(u_{0}\right)=\left\{v_{1}, \ldots, v_{n-3}\right\}$ and $V(G)=$ $\left\{v_{1}, \ldots, v_{n-3}, u_{0}, u_{1}, \ldots, u_{r+1}\right\}$. Then $d\left(u_{i}, u_{0}\right)=2$ for $i=1,2, \ldots, r+1$ and $\left\{u_{0}, u_{1}, \ldots, u_{r+1}\right\}$ is an independent set. If $u_{i} v_{j} \notin E(G)$ for some $i \in\{1,2, \ldots, r+1\}$ and $j \in\{1,2, \ldots, n-3\}$, as $G$ is an extremal graph we see that $v_{j} v_{k} \in E(G)$ for some $k \in\{1,2, \ldots, n-3\}-\{j\}$. Set $G_{1}=G-v_{j} v_{k}+u_{i} v_{j}$. Then clearly $G_{1}$ does not contain $T_{n}^{*}, e(G)=e\left(G_{1}\right), \Delta\left(G_{1}\right)=n-3$ and $G_{1}$ is connected. Repeating the above step we see that there is an extremal graph $G^{\prime} \in \operatorname{Ex}\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)$ such that $V\left(G^{\prime}\right)=\left\{v_{1}, \ldots, v_{n-3}, u_{0}, u_{1}, \ldots, u_{r+1}\right\}, \Gamma\left(u_{i}\right)=\left\{v_{1}, \ldots, v_{n-3}\right\}$ for $i=$ $0,1, \ldots, r+1, \Delta\left(G^{\prime}\right)=n-3$ and $G^{\prime}$ is connected. It is easily seen that

$$
e\left(G^{\prime}\right)=(n-3)(r+2)+e\left(G^{\prime}\left[v_{1}, \ldots, v_{n-3}\right]\right) .
$$

Set $H=G^{\prime}\left[v_{1}, \ldots, v_{n-3}\right]$. Since $\Delta\left(G^{\prime}\right)=n-3$ and $G^{\prime} \in \operatorname{Ex}\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)$, we see that $\Delta(H) \leq n-5-r$ and $H \in E x\left(n-3 ;\left\{K_{1, n-4-r}, T_{n-2-r}^{*}\right\}\right)$.

Now we assume $r \geq \frac{n-7}{2}$. If $\Delta(H)=n-5-r$, we may assume $d\left(v_{1}\right)=n-5-r$ and $\Gamma_{H}\left(v_{1}\right)=\left\{v_{2}, \ldots, v_{n-4-r}\right\}$. Since $G^{\prime}$ does not contain $T_{n}^{*}$ and $d_{G^{\prime}}\left(v_{1}\right)=n-3$, we see that $\left\{v_{n-3-r}, \ldots, v_{n-3}\right\}$ is an independent set. As $r \leq n-6$, by the above we have $e(H) \leq \sum_{i=2}^{n-4-r} d_{H}\left(v_{i}\right) \leq(n-5-r)^{2}$. Since $r \geq \frac{n-7}{2}$ we have $n-3 \geq$ $2(n-5-r)$. Set $H^{\prime}=K_{n-5-r, n-5-r} \cup(3 r+9-n) K_{1}$. Then $\left|V\left(H^{\prime}\right)\right|=n-1+r$ and $e\left(H^{\prime}\right)=(n-5-r)^{2}, \Delta\left(H^{\prime}\right)=n-5-r$ and $H^{\prime}$ does not contain $T_{n-2-r}^{*}$. As $G^{\prime}$ is an extremal graph, by the above we must have $e(H)=e\left(H^{\prime}\right)=(n-5-r)^{2}$. If $\Delta(H)<n-5-r$, then clearly $H \in E x\left(n-3 ; K_{1, n-5-r}\right)$. Using Theorem 2.1 we see that $e(H)=e x\left(n-3 ; K_{1, n-5-r}\right)=\left[\frac{(n-3)(n-6-r)}{2}\right]$. Therefore, $e(H)=\max \{(n-5-$ $\left.r)^{2},\left[\frac{(n-3)(n-6-r)}{2}\right]\right\}$ and so

$$
\begin{aligned}
& e x\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right) \\
& =e(G)=e\left(G^{\prime}\right)=(n-3)(r+2)+\max \left\{(n-5-r)^{2},\left[\frac{(n-3)(n-6-r)}{2}\right]\right\}
\end{aligned}
$$

This completes the proof.
Theorem 4.4. Let $p, n \in \mathbb{N}, p \geq n \geq 11, r \in\{2,3, \ldots, n-6\}$ and $p \equiv r(\bmod n-1)$. Let $m \in\{0,1, \ldots, r+1\}$ be given by $n-3 \equiv m(\bmod r+2)$. Then

$$
\begin{aligned}
& \operatorname{ex}\left(p ; T_{n}^{*}\right) \\
& = \begin{cases}{\left[\frac{(n-2)(p-1)-2 r-m-3}{2}\right]} & \text { if } r \geq 4 \text { and } 2 \leq m \leq r-1, \\
\frac{(n-2)(p-1)-m(r+2-m)-r-1}{2} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proof. Suppose $s=\left[\frac{n-3}{r+2}\right]$. Then $n-3=s(r+2)+m$. As $r+2<n-3$ we see that
$s \in \mathbb{N}$. We claim that

$$
\begin{align*}
& \operatorname{ex}\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right) \\
& =\frac{(n-3-m)(n-1+r+m)}{2}+\max \left\{m^{2},\left[\frac{(r+2+m)(m-1)}{2}\right]\right\} . \tag{4.2}
\end{align*}
$$

When $s=1$ we have $n-5-r=m<r+2$ and so $\frac{n-7}{2}<r<n-5$. Thus applying Lemma 4.7 we have

$$
\begin{aligned}
& \operatorname{ex}\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right) \\
& =(n-3)(r+2)+\max \left\{(n-5-r)^{2},\left[\frac{(n-6-r)(n-3)}{2}\right]\right\} \\
& =\frac{(n-3-m)(n-1+r+m)}{2}+\max \left\{m^{2},\left[\frac{(r+2+m)(m-1)}{2}\right]\right\} .
\end{aligned}
$$

So (4.2) holds.
From now on we assume $s \geq 2$. For $i=0,1, \ldots, s-2$ we have $n-i(r+2)-5 \geq$ $n-3-(s-2)(r+2)-2 \geq 2(r+2)-2>r \geq 2$. Thus, by Lemma 4.7 we have

$$
\begin{aligned}
& e x\left(n-3+r+2-i(r+2) ;\left\{K_{1, n-i(r+2)-2}, T_{n-i(r+2)}^{*}\right\}\right) \\
& =(r+2)(n-3-i(r+2)) \\
& \quad+e x\left(n-3-i(r+2) ;\left\{K_{1, n-(i+1)(r+2)-2}, T_{n-(i+1)(r+2)}^{*}\right\}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& e x\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)-e x\left(2(r+2)+m ;\left\{K_{1, m+r+3}, T_{m+r+5}^{*}\right\}\right) \\
& =\quad e x\left(n-3+r+2 ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right) \\
& \quad \quad-e x\left(n-3-(s-2)(r+2) ;\left\{K_{1, n-(s-1)(r+2)-2}, T_{n-(s-1)(r+2)}^{*}\right\}\right) \\
& =\sum_{i=0}^{s-2}\left(e x\left(n-3+r+2-i(r+2) ;\left\{K_{1, n-i(r+2)-2}, T_{n-i(r+2)}^{*}\right\}\right)\right. \\
& \left.\quad \quad-e x\left(n-3-i(r+2) ;\left\{K_{1, n-(i+1)(r+2)-2}, T_{n-(i+1)(r+2)}^{*}\right\}\right)\right) \\
& =\sum_{i=0}^{s-2}(r+2)(n-3-i(r+2)) .
\end{aligned}
$$

Set $n^{\prime}=m+r+5$. As $r>m-2$ and $r \geq 2$, we have $\frac{n^{\prime}-7}{2}<r \leq n^{\prime}-5$ and $n^{\prime} \geq$ $r+5 \geq 7$. Thus, by Lemma 4.7 we have

$$
\begin{aligned}
& \operatorname{ex}\left(2(r+2)+m ;\left\{K_{1, m+r+3}, T_{m+r+5}^{*}\right\}\right) \\
& =\operatorname{ex}\left(n^{\prime}-1+r ;\left\{K_{1, n^{\prime}-2}, T_{n^{\prime}}^{*}\right\}\right) \\
& =\left(n^{\prime}-3\right)(r+2)+\max \left\{\left(n^{\prime}-5-r\right)^{2},\left[\frac{\left(n^{\prime}-6-r\right)\left(n^{\prime}-3\right)}{2}\right]\right\}
\end{aligned}
$$

$$
=(r+2)(n-3-(s-1)(r+2))+\max \left\{m^{2},\left[\frac{(m-1)(m+r+2)}{2}\right]\right\} .
$$

Therefore,

$$
\begin{aligned}
& \operatorname{ex}\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right) \\
& =\sum_{i=0}^{s-1}(r+2)(n-3-i(r+2))+\max \left\{m^{2},\left[\frac{(m-1)(m+r+2)}{2}\right]\right\} .
\end{aligned}
$$

As

$$
\begin{aligned}
& \sum_{i=0}^{s-1}(r+2)(n-3-i(r+2)) \\
& =(r+2)\left((n-3) s-(r+2) \frac{(s-1) s}{2}\right)=\frac{s(r+2)}{2}(2(n-3)-(s-1)(r+2)) \\
& =\frac{(n-3-m)(n-1+r+m)}{2}
\end{aligned}
$$

from the above we see that (4.2) is also true for $s \geq 2$.
Observe that $\frac{(m+r+2)(m-1)}{2}=m^{2}+\frac{(r-m)(m-1)-2}{2}$. For $m=0,1, r, r+1$, we have $(r-m)(m-1)-2 \leq 0$. Now assume $2 \leq m \leq r-1$. If $r=3$, then $m=2$ and so $(r-m)(m-1)-2=-1<0$. If $r \geq 4$, then clearly $(r-m)(m-1)-2 \geq 0$. Thus, by (4.2) and the above we obtain

$$
\begin{align*}
& \operatorname{ex}\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right) \\
& =\left\{\begin{array}{l}
\frac{(n-3-m)(n-1+r+m)}{2}+\left[\frac{(r+2+m)(m-1)}{2}\right] \\
\text { if } r \geq 4 \text { and } 2 \leq m \leq r-1, \\
\frac{(n-3-m)(n-1+r+m)}{2}+m^{2} \\
\text { otherwise. }
\end{array}\right. \tag{4.3}
\end{align*}
$$

For $r=2$ we have $m \leq r+1 \leq 3$. Let $G \in \operatorname{Ex}\left(n+1 ; T_{n}^{*}\right)$. If $\Delta(G) \geq n-2$, by Lemmas 4.1 and 4.2 we have $G=K_{n-1} \cup K_{2}$. Thus, $e(G)=\binom{n-1}{2}+1$. If $\Delta(G) \leq$ $n-3$, then $G \in E x\left(n+1 ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)$. Thus, applying (4.3) we have

$$
\begin{aligned}
& \operatorname{ex}\left(n+1 ; T_{n}^{*}\right) \\
& =\max \left\{\frac{(n-1)(n-2)}{2}+1, \operatorname{ex}\left(n+1 ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)\right\} \\
& =\max \left\{\frac{(n-1)(n-2)}{2}+1, \frac{(n-3-m)(n+1+m)}{2}+m^{2}\right\} \\
& =\frac{(n-3-m)(n+1+m)}{2}+m^{2}+\max \left\{0,-\frac{(m-2)^{2}+n-11}{2}\right\} \\
& =\frac{(n-3-m)(n+1+m)}{2}+m^{2} .
\end{aligned}
$$

For $r \geq 3$, by Lemma 4.6 we have $\operatorname{ex}\left(n-1+r ; T_{n}^{*}\right)=\operatorname{ex}\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)$. Thus applying (4.3) we obtain

$$
\begin{align*}
& \operatorname{ex}\left(n-1+r ; T_{n}^{*}\right) \\
& =\left\{\begin{array}{c}
\frac{(n-3-m)(n-1+r+m)}{2}+\left[\frac{(r+2+m)(m-1)}{2}\right] \\
\text { if } r \geq 4 \text { and } 2 \leq m \leq r-1, \\
\frac{(n-3-m)(n-1+r+m)}{2}+m^{2} \\
\text { otherwise. }
\end{array}\right. \tag{4.4}
\end{align*}
$$

By the previous argument, (4.4) is also true for $r=2$.
Now suppose $p=k(n-1)+r$. Then $k \in \mathbb{N}$. Combining (4.4) with Theorem 4.1 we deduce the following result:

$$
\begin{aligned}
& \operatorname{ex}\left(p ; T_{n}^{*}\right) \\
& =\left\{\begin{array}{l}
(k-1)\binom{n-1}{2}+\frac{(n-3-m)(n-1+r+m)}{2}+\left[\frac{(r+2+m)(m-1)}{2}\right] \\
\quad \text { if } r \geq 4 \text { and } 2 \leq m \leq r-1, \\
(k-1)\binom{n-1}{2}+\frac{(n-3-m)(n-1+r+m)}{2}+m^{2} \quad \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

To see the result, we note that

$$
\begin{aligned}
& (k-1)\binom{n-1}{2}+\frac{(n-3-m)(n-1+r+m)}{2}+\left[\frac{(r+2+m)(m-1)}{2}\right] \\
& =\left[\frac{(n-2)(p-1)-2 r-m-3}{2}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& (k-1)\binom{n-1}{2}+\frac{(n-3-m)(n-1+r+m)}{2}+m^{2} \\
& =\frac{(n-2)(p-1)-m(r+2-m)-r-1}{2} .
\end{aligned}
$$

Corollary 4.1. Suppose $p, n, r \in \mathbb{N}, p \geq n \geq 11, \frac{n-7}{2}<r \leq n-6$ and $p \equiv r(\bmod n-$ 1). Then

$$
\operatorname{ex}\left(p ; T_{n}^{*}\right)= \begin{cases}{\left[\frac{(n-2)(p-2)-r}{2}\right]} & \text { if } \frac{n-4}{2} \leq r \leq n-7, \\ \frac{(n-2)(p-3)}{2}+3 & \text { if } r=n-6, \\ \frac{(n-2)(2 p-5)+7}{4} & \text { if } r=\frac{n-5}{2}, \\ \frac{(n-2)(p-2)}{2}+1 & \text { if } r=\frac{n-6}{2} .\end{cases}
$$

Proof. Clearly $r>\frac{n-7}{2} \geq 2$. Set $m=n-5-r$. Then $1 \leq m<r+2$ and $n-3 \equiv$ $m(\bmod r+2)$. It is evident that

$$
2 \leq m \leq r-1 \Longleftrightarrow \frac{n-4}{2} \leq r \leq n-7
$$

As $n \geq 11$ we see that $r \geq \frac{n-4}{2}$ implies $r \geq 4$. Now applying Theorem 4.4 we deduce that

$$
e x\left(p ; T_{n}^{*}\right)=\left\{\begin{array}{c}
{\left[\frac{(n-2)(p-1)-2 r-(n-5-r)-3}{2}\right]=\left[\frac{(n-2)(p-2)-r}{2}\right]} \\
\text { if } \frac{n-4}{2} \leq r \leq n-7, \\
\frac{(n-2)(p-1)-(n-5-r)(r+2-(n-5-r))-r-1}{2} \\
\text { if } r=n-6 \text { or }\left[\frac{n-5}{2}\right] .
\end{array}\right.
$$

This yields the result.
Corollary 4.2. Suppose $p, n \in \mathbb{N}, p \geq n \geq 11,2 \nmid n$ and $p \equiv \frac{n-7}{2}(\bmod n-1)$. Then

$$
e x\left(p ; T_{n}^{*}\right)=\frac{(n-2)(2 p-3)+3}{4}
$$

Proof. Taking $r=\frac{n-7}{2}$ and $m=0$ in Theorem 4.4 we derive the result.
Corollary 4.3. Suppose $p, n \in \mathbb{N}, p \geq n \geq 11$ and $(n-1) \mid(p-2)$. Then

$$
e x\left(p ; T_{n}^{*}\right)= \begin{cases}((n-2)(p-1)-6) / 2 & \text { if } n \equiv 0(\bmod 2), \\ ((n-2)(p-1)-7) / 2 & \text { if } n \equiv 1(\bmod 4), \\ ((n-2)(p-1)-3) / 2 & \text { if } n \equiv 3(\bmod 4) .\end{cases}
$$

Proof. Let $m \in\{0,1,2,3\}$ be given by $n-3 \equiv m(\bmod 4)$. Then clearly $m=$ $1,2,3$ or 0 according as $n \equiv 0,1,2$ or $3(\bmod 4)$. Now putting $r=2$ in Theorem 4.4 and applying the above we obtain the result.

Corollary 4.4. Suppose $p, n \in \mathbb{N}, p \geq n \geq 11$ and $(n-1) \mid(p-3)$. Then

$$
e x\left(p ; T_{n}^{*}\right)= \begin{cases}(n-2)(p-1) / 2-2 & \text { if } n \equiv 3(\bmod 5), \\ (n-2)(p-1) / 2-4 & \text { if } n \equiv 2,4(\bmod 5), \\ (n-2)(p-1) / 2-5 & \text { if } n \equiv 0,1(\bmod 5) .\end{cases}
$$

Proof. Let $m \in\{0,1,2,3,4\}$ be given by $n-3 \equiv m(\bmod 5)$. Then clearly $m=$ $2,3,4,0$ or 1 according as $n \equiv 0,1,2,3$ or $4(\bmod 5)$. Now putting $r=3$ in Theorem 4.4 and applying the above we obtain the result.

In a similar way, putting $r=4$ in Theorem 4.4 we deduce the following result. Corollary 4.5. Suppose $p, n \in \mathbb{N}, p \geq n \geq 11$ and $(n-1) \mid(p-4)$. Then

$$
\operatorname{ex}\left(p ; T_{n}^{*}\right)= \begin{cases}(n-2)(p-1) / 2-7 & \text { if } n \equiv 0(\bmod 6), \\ (n-2)(p-1) / 2-5 & \text { if } n \equiv \pm 2(\bmod 6), \\ ((n-2)(p-1)-13) / 2 & \text { if } n \equiv \pm 1(\bmod 6), \\ ((n-2)(p-1)-5) / 2 & \text { if } n \equiv 3(\bmod 6) .\end{cases}
$$

Corollary 4.6. Suppose $p \in \mathbb{N}, p \geq 11, r \in\{0,1, \ldots, 9\}$ and $p \equiv r(\bmod 10)$. Then

$$
\operatorname{ex}\left(p ; T_{11}^{*}\right)= \begin{cases}(9 p-r(10-r)) / 2 & \text { if } r \in\{0,1,7,8,9\}, \\ (9 p-12) / 2 & \text { if } r=2, \\ (9 p-19) / 2 & \text { if } r=3, \\ (9 p-22) / 2 & \text { if } r=4, \\ (9 p-21) / 2 & \text { if } r=5, \\ (9 p-16) / 2 & \text { if } r=6 .\end{cases}
$$

Proof. The result follows from Theorems 4.1-4.3 and Corollaries 4.1-4.2.
Theorem 4.5. Let $p, n \in \mathbb{N}$ with $6 \leq n \leq 10$ and $p \geq n$, and let $r \in\{0,1, \ldots, n-2\}$ be given by $p \equiv r(\bmod n-1)$.
(i) If $n=6,7$, then $\operatorname{ex}\left(p ; T_{n}^{*}\right)=\frac{(n-2) p-r(n-1-r)}{2}$.
(ii) If $n=8,9$, then

$$
e x\left(p ; T_{n}^{*}\right)= \begin{cases}\frac{(n-2) p-r(n-1-r)}{2} & \text { if } r \neq n-5 \\ \frac{(n-2)(p-2)}{2}+1 & \text { if } r=n-5\end{cases}
$$

(iii) If $n=10$, then

$$
e x\left(p ; T_{n}^{*}\right)= \begin{cases}4 p-r(9-r) / 2 & \text { if } r \neq 4,5 \\ 4 p-7 & \text { if } r=5 \\ 4 p-9 & \text { if } r=4\end{cases}
$$

Proof. For $r \in\{0,1, n-5, n-4, n-3, n-2\}$ the result follows from Theorems 4.1, 4.2 and 4.3. Now assume $2 \leq r \leq n-6$. Then $r \geq 2>\frac{n-7}{2}$. By Lemma 4.7 we have

$$
\begin{aligned}
& \operatorname{ex}\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right) \\
& =(n-3)(r+2)+\max \left\{(n-5-r)^{2},\left[\frac{(n-6-r)(n-3)}{2}\right]\right\} .
\end{aligned}
$$

If $G \in E x\left(n-1+r ; T_{n}^{*}\right)$ and $\Delta(G) \geq n-2$, using Lemmas 4.1 and 4.2 we see that $G \cong K_{n-1} \cup K_{r}$. Thus,

$$
e x\left(n-1+r ; T_{n}^{*}\right)=\max \left\{\binom{n-1}{2}+\binom{r}{2}, e x\left(n-1+r ;\left\{K_{1, n-2}, T_{n}^{*}\right\}\right)\right\}
$$

$$
\begin{aligned}
& =\max \left\{\binom{n-1}{2}+\binom{r}{2},(n-3)(r+2)\right. \\
& \left.\quad+\max \left\{(n-5-r)^{2},\left[\frac{(n-6-r)(n-3)}{2}\right]\right\}\right\} .
\end{aligned}
$$

From this we deduce that

$$
\begin{aligned}
& \operatorname{ex}\left(7+2 ; T_{8}^{*}\right)=\binom{7}{2}+\binom{2}{2}, \quad \operatorname{ex}\left(8+2 ; T_{9}^{*}\right)=\binom{8}{2}+\binom{2}{2}, \\
& \operatorname{ex}\left(8+3 ; T_{9}^{*}\right)=\binom{8}{2}+\binom{3}{2}, \quad \operatorname{ex}\left(9+2 ; T_{10}^{*}\right)=\binom{9}{2}+\binom{2}{2}, \\
& \operatorname{ex}\left(9+3 ; T_{10}^{*}\right)=\binom{9}{2}+\binom{3}{2}, \quad \operatorname{ex}\left(9+4 ; T_{10}^{*}\right)=43 .
\end{aligned}
$$

Suppose $p=k(n-1)+r$. Then $k \in \mathbb{N}$. By Theorem 4.1,

$$
\begin{aligned}
e x\left(p ; T_{n}^{*}\right) & =(k-1)\binom{n-1}{2}+e x\left(n-1+r ; T_{n}^{*}\right) \\
& =\frac{(n-2)(p-r)}{2}+e x\left(n-1+r ; T_{n}^{*}\right)-\binom{n-1}{2} .
\end{aligned}
$$

Now combining all the above we deduce the result.

## Acknowledgements

The first author is supported by the Natural Sciences Foundation of China (grant No. 10971078).

## References

[1] P. Erdös and T. Gallai, On maximal paths and circuits in graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-356.
[2] G. H. Fan and L. L. Sun, The Erdös-Sós conjecture for spiders, Discrete Math. 307 (2007), 3055-3062.
[3] R. J. Faudree and R. H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory, Ser. B, 19 (1975), 150-160.
[4] T. P. Kirkman, On a problem in combinations, Cambridge Dublin Math. J. 2 (1847), 191-204.
[5] J. Petersen, Die Theorie der regulären graphs, Acta Math. 15 (1891), 193220.
[6] S. P. Radziszowski, Small Ramsey numbers (dynamic surveys), Electron. J. Combin. (2009), DS1, 72pp.
[7] A. F. Sidorenko, Asymptotic solution for a new class of forbidden r-graphs, Combinatorica 9 (1989), 207-215.
[8] M. Woźniak, On the Erdös-Sós conjecture, J. Graph Theory 21 (1996), 229234.


[^0]:    Received: January 4, 2011; Accepted: April 1, 2011
    *E-mail address: zhihongsun@yahoo.com; Website: http://www.hytc.edu.cn/xsjl/szh
    ${ }^{\dagger}$ E-mail address: wanglinlin__1986@yahoo.cn

